Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Identifying when precession can be measured in gravitational waveforms

Green, Rhys, Hoy, Charlie, Fairhurst, Stephen, Hannam, Mark, Pannarale, Francesco and Thomas, Cory 2021. Identifying when precession can be measured in gravitational waveforms. Physical Review D 103 (12) , 124023. 10.1103/PhysRevD.103.124023

[thumbnail of 10.1103PhysRevD.103.124023 - Published.pdf] PDF - Published Version
Download (2MB)

Abstract

In binary-black-hole systems where the black-hole spins are misaligned with the orbital angular momentum, precession effects leave characteristic modulations in the emitted gravitational waveform. Here, we investigate where in the parameter space we will be able to accurately identify precession, for likely observations over coming LIGO-Virgo-KAGRA observing runs. Despite the large number of parameters that characterize a precessing binary, we perform a large scale systematic study to identify the impact of each source parameter on the measurement of precession. We simulate a fiducial binary at moderate mass-ratio, signal-to-noise ratio (SNR), and spins, such that precession will be clearly identifiable, then successively vary each parameter while holding the remaining parameters fixed. As expected, evidence for precession increases with signal-to noise-ratio (SNR), higher in-plane spins, more unequal component masses, and higher inclination, but our study provides a quantitative illustration of each of these effects, and informs our intuition on parameter dependencies that have not yet been studied in detail, for example, the effect of varying the relative strength of the two polarizations, the total mass, and the aligned-spin components. We also measure the “precession SNR” ρ p , to quantify the signal power associated with precession. By comparing ρ p with both Bayes factors and the recovered posterior distributions, we find it is a reliable metric for measurability that accurately predicts when the detected signal contains evidence for precession.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Publisher: American Physical Society
ISSN: 2470-0010
Date of First Compliant Deposit: 6 July 2021
Date of Acceptance: 11 May 2021
Last Modified: 31 Jan 2022 07:22
URI: https://orca.cardiff.ac.uk/id/eprint/142412

Citation Data

Cited 4 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics