Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

The role of large-scale motions in catalysis by dihydrofolate reductase

Loveridge, Edric Joel, Tey, Lai-Hock, Behiry, Enas Mamdouh, Dawson, William Michael, Evans, Rhiannon Mari, Whittaker, Sara B.-M., Günther, Ulrich L., Williams, Christopher, Crump, Matthew P. and Allemann, Rudolf Konrad ORCID: 2011. The role of large-scale motions in catalysis by dihydrofolate reductase. Journal of the American Chemical Society 133 (50) , pp. 20561-20570. 10.1021/ja208844j

[thumbnail of OA-16.pdf]
Download (4MB) | Preview


Dihydrofolate reductase has long been used as a model system to study the coupling of protein motions to enzymatic hydride transfer. By studying environmental effects on hydride transfer in dihydrofolate reductase (DHFR) from the cold-adapted bacterium Moritella profunda (MpDHFR) and comparing the flexibility of this enzyme to that of DHFR from Escherichia coli (EcDHFR), we demonstrate that factors that affect large-scale (i.e., long-range, but not necessarily large amplitude) protein motions have no effect on the kinetic isotope effect on hydride transfer or its temperature dependence, although the rates of the catalyzed reaction are affected. Hydrogen/deuterium exchange studies by NMR-spectroscopy show that MpDHFR is a more flexible enzyme than EcDHFR. NMR experiments with EcDHFR in the presence of cosolvents suggest differences in the conformational ensemble of the enzyme. The fact that enzymes from different environmental niches and with different flexibilities display the same behavior of the kinetic isotope effect on hydride transfer strongly suggests that, while protein motions are important to generate the reaction ready conformation, an optimal conformation with the correct electrostatics and geometry for the reaction to occur, they do not influence the nature of the chemical step itself; large-scale motions do not couple directly to hydride transfer proper in DHFR.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Cardiff Catalysis Institute (CCI)
Subjects: Q Science > QD Chemistry
Publisher: American Chemical Society
ISSN: 0002-7863
Funders: BBSRC
Last Modified: 04 Jun 2023 19:01

Citation Data

Cited 40 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics