Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Association analyses of rare variants identify two genes associated with refractive error

Patasova, Karina, Haarman, Annechien E. G., Musolf, Anthony M., Mahroo, Omar A., Rahi, Jugnoo S., Falchi, Mario, Verhoeven, Virginie J. M., Bailey-Wilson, Joan E., Klaver, Caroline C. W., Duggal, Priya, Klein, Alison, Guggenheim, Jeremy A. ORCID: https://orcid.org/0000-0001-5164-340X, Hammond, Chris J., Hysi, Pirro G., the CREAM Consortium, the UK Biobank Eye and Vision Consortium 2022. Association analyses of rare variants identify two genes associated with refractive error. PLoS ONE 17 (9) , e0272379. 10.1371/journal.pone.0272379

[thumbnail of pone.0272379.pdf] PDF - Published Version
Download (814kB)

Abstract

Purpose: Genetic variants identified through population-based genome-wide studies are generally of high frequency, exerting their action in the central part of the refractive error spectrum. However, the power to identify associations with variants of lower minor allele frequency is greatly reduced, requiring considerable sample sizes. Here we aim to assess the impact of rare variants on genetic variation of refractive errors in a very large general population cohort. Methods: Genetic association analyses of non-cyclopaedic autorefraction calculated as mean spherical equivalent (SPHE) used whole-exome sequence genotypic information from 50,893 unrelated participants in the UK Biobank of European ancestry. Gene-based analyses tested for association with SPHE using an optimised SNP-set kernel association test (SKAT-O) restricted to rare variants (minor allele frequency < 1%) within protein-coding regions of the genome. All models were adjusted for age, sex and common lead variants within the same locus reported by previous genome-wide association studies. Potentially causal markers driving association at significant loci were elucidated using sensitivity analyses by sequentially dropping the most associated variants from gene-based analyses. Results: We found strong statistical evidence for association of SPHE with the SIX6 (p-value = 2.15 x 10−10, or Bonferroni-Corrected p = 4.41x10-06) and the CRX gene (p-value = 6.65 x 10−08, or Bonferroni-Corrected p = 0.001). The SIX6 gene codes for a transcription factor believed to be critical to the eye, retina and optic disc development and morphology, while CRX regulates photoreceptor specification and expression of over 700 genes in the retina. These novel associations suggest an important role of genes involved in eye morphogenesis in refractive error. Conclusion: The results of our study support previous research highlighting the importance of rare variants to the genetic risk of refractive error. We explain some of the origins of the genetic signals seen in GWAS but also report for the first time a completely novel association with the CRX gene.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Optometry and Vision Sciences
Additional Information: License information from Publisher: LICENSE 1: URL: https://creativecommons.org/publicdomain/zero/1.0/
Publisher: Public Library of Science
ISSN: 1932-6203
Date of First Compliant Deposit: 23 September 2022
Date of Acceptance: 18 July 2022
Last Modified: 23 May 2023 14:37
URI: https://orca.cardiff.ac.uk/id/eprint/152804

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics