Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Short-term risk prediction after major lower limb amputation: PERCEIVE study

Gwilym, Brenig L., Pallmann, Philip ORCID: https://orcid.org/0000-0001-8274-9696, Waldron, Cherry-Ann ORCID: https://orcid.org/0000-0001-8465-2492, Thomas-Jones, Emma ORCID: https://orcid.org/0000-0001-7716-2786, Milosevic, Sarah ORCID: https://orcid.org/0000-0003-1973-8286, Brookes-Howell, Lucy ORCID: https://orcid.org/0000-0002-8263-7130, Harris, Debbie ORCID: https://orcid.org/0000-0002-7073-7724, Massey, Ian, Burton, Jo, Stewart, Philippa, Samuel, Katie, Jones, Sian, Cox, David, Clothier, Annie, Edwards, Adrian ORCID: https://orcid.org/0000-0002-6228-4446, Twine, Christopher P. ORCID: https://orcid.org/0000-0003-0385-5760 and Bosanquet, David C. ORCID: https://orcid.org/0000-0003-2304-0489 2022. Short-term risk prediction after major lower limb amputation: PERCEIVE study. BJS Open 109 (12) , pp. 1300-1311. 10.1093/bjs/znac309

Full text not available from this repository.

Abstract

Background The accuracy with which healthcare professionals (HCPs) and risk prediction tools predict outcomes after major lower limb amputation (MLLA) is uncertain. The aim of this study was to evaluate the accuracy of predicting short-term (30 days after MLLA) mortality, morbidity, and revisional surgery. Methods The PERCEIVE (PrEdiction of Risk and Communication of outcomE following major lower limb amputation: a collaboratIVE) study was launched on 1 October 2020. It was an international multicentre study, including adults undergoing MLLA for complications of peripheral arterial disease and/or diabetes. Preoperative predictions of 30-day mortality, morbidity, and MLLA revision by surgeons and anaesthetists were recorded. Probabilities from relevant risk prediction tools were calculated. Evaluation of accuracy included measures of discrimination, calibration, and overall performance. Results Some 537 patients were included. HCPs had acceptable discrimination in predicting mortality (931 predictions; C-statistic 0.758) and MLLA revision (565 predictions; C-statistic 0.756), but were poor at predicting morbidity (980 predictions; C-statistic 0.616). They overpredicted the risk of all outcomes. All except three risk prediction tools had worse discrimination than HCPs for predicting mortality (C-statistics 0.789, 0.774, and 0.773); two of these significantly overestimated the risk compared with HCPs. SORT version 2 (the only tool incorporating HCP predictions) demonstrated better calibration and overall performance (Brier score 0.082) than HCPs. Tools predicting morbidity and MLLA revision had poor discrimination (C-statistics 0.520 and 0.679). Conclusion Clinicians predicted mortality and MLLA revision well, but predicted morbidity poorly. They overestimated the risk of mortality, morbidity, and MLLA revision. Most short-term risk prediction tools had poorer discrimination or calibration than HCPs. The best method of predicting mortality was a statistical tool that incorporated HCP estimation.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Centre for Trials Research (CNTRR)
Additional Information: This record has a correction: Corrigendum to: Short-term risk prediction after major lower limb amputation: PERCEIVE study, British Journal of Surgery, Volume 110, Issue 4, April 2023, Page 526, https://doi.org/10.1093/bjs/znad015
Publisher: Oxford University Press
ISSN: 2474-9842
Related URLs:
Date of Acceptance: 31 July 2022
Last Modified: 09 Nov 2024 20:15
URI: https://orca.cardiff.ac.uk/id/eprint/153855

Actions (repository staff only)

Edit Item Edit Item