Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Optimizing the parameters of long short-term memory networks using the bees algorithm

Alamri, Nawaf Mohammad ORCID:, Packianather, Michael ORCID: and Bigot, Samuel ORCID: 2023. Optimizing the parameters of long short-term memory networks using the bees algorithm. Applied Sciences 13 (4) , 2536. 10.3390/app13042536

[thumbnail of applsci-13-02536.pdf] PDF - Published Version
Available under License Creative Commons Attribution.

Download (6MB)


Improving the performance of Deep Learning (DL) algorithms is a challenging problem. However, DL is applied to different types of Deep Neural Networks, and Long Short-Term Memory (LSTM) is one of them that deals with time series or sequential data. This paper attempts to overcome this problem by optimizing LSTM parameters using the Bees Algorithm (BA), which is a nature-inspired algorithm that mimics the foraging behavior of honey bees. In particular, it was used to optimize the adjustment factors of the learning rate in the forget, input, and output gates, in addition to cell candidate, in both forward and backward sides. Furthermore, the BA was used to optimize the learning rate factor in the fully connected layer. In this study, artificial porosity images were used for testing the algorithms; since the input data were images, a Convolutional Neural Network (CNN) was added in order to extract the features in the images to feed into the LSTM for predicting the percentage of porosity in the sequential layers of artificial porosity images that mimic real CT scan images of products manufactured by the Selective Laser Melting (SLM) process. Applying a Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) yielded a porosity prediction accuracy of 93.17%. Although using Bayesian Optimization (BO) to optimize the LSTM parameters mentioned previously did not improve the performance of the LSTM, as the prediction accuracy was 93%, adding the BA to optimize the same LSTM parameters did improve its performance in predicting the porosity, with an accuracy of 95.17% where a hybrid Bees Algorithm Convolutional Neural Network Long Short-Term Memory (BA-CNN-LSTM) was used. Furthermore, the hybrid BA-CNN-LSTM algorithm was capable of dealing with classification problems as well. This was shown by applying it to Electrocardiogram (ECG) benchmark images, which improved the test set classification accuracy, which was 92.50% for the CNN-LSTM algorithm and 95% for both the BO-CNN-LSTM and BA-CNN-LSTM algorithms. In addition, the turbofan engine degradation simulation numerical dataset was used to predict the Remaining Useful Life (RUL) of the engines using the LSTM network. A CNN was not needed in this case, as there was no feature extraction for the images. However, adding the BA to optimize the LSTM parameters improved the prediction accuracy in the testing set for the LSTM and BO-LSTM, which increased from 74% to 77% for the hybrid BA-LSTM algorithm.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Engineering
Publisher: MDPI
ISSN: 2076-3417
Date of First Compliant Deposit: 20 February 2023
Date of Acceptance: 14 February 2023
Last Modified: 04 May 2023 22:14

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics