Ramsay, Andrew J., Hekmati, Reza, Patrickson, Charlie J., Baber, Simon, Arvidsson-Shukur, David R. M., Bennett, Anthony J. ORCID: https://orcid.org/0000-0002-5386-3710 and Luxmoore, Isaac J. 2023. Coherence protection of spin qubits in hexagonal boron nitride. Nature Communications 14 (1) , 461. 10.1038/s41467-023-36196-7 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
Spin defects in foils of hexagonal boron nitride are an attractive platform for magnetic field imaging, since the probe can be placed in close proximity to the target. However, as a III-V material the electron spin coherence is limited by the nuclear spin environment, with spin echo coherence times of ∽100 ns at room temperature accessible magnetic fields. We use a strong continuous microwave drive with a modulation in order to stabilize a Rabi oscillation, extending the coherence time up to ∽ 4μs, which is close to the 10 μs electron spin lifetime in our sample. We then define a protected qubit basis, and show full control of the protected qubit. The coherence times of a superposition of the protected qubit can be as high as 0.8 μs. This work establishes that boron vacancies in hexagonal boron nitride can have electron spin coherence times that are competitive with typical nitrogen vacancy centres in small nanodiamonds under ambient conditions.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Advanced Research Computing @ Cardiff (ARCCA) Engineering Physics and Astronomy |
Publisher: | Nature Research |
ISSN: | 2041-1723 |
Date of First Compliant Deposit: | 28 March 2023 |
Date of Acceptance: | 17 January 2023 |
Last Modified: | 14 Jun 2024 16:06 |
URI: | https://orca.cardiff.ac.uk/id/eprint/158086 |
Actions (repository staff only)
Edit Item |