Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Non-local contribution from small scales in galaxy-galaxy lensing: Comparison of mitigation schemes

Prat, J., Zacharegkas, G., Park, Y., MacCrann, N., Switzer, E.R., Pandey, S., Chang, C., Blazek, J., Miquel, R., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Bechtol, K., Becker, M.R., Bernstein, G.M., Chen, R., Choi, A., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Cordero, J., Crocce, M., Davis, C., DeRose, J., Diehl, H.T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Fosalba, P., Friedrich, O., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I. ORCID:, Hartley, W.G., Herner, K., Huang, H., Huff, E.M., Jarvis, M., Krause, E., Kuropatkin, N., Leget, P-F., McCullough, J., Myles, J., Navarro-Alsina, A., Porredon, A., Raveri, M., Rollins, R.P., Roodman, A., Rosenfeld, R., Ross, A.J., Rykoff, E.S., Sánchez, C., Sanchez, J., Secco, L.F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Aguena, M., Allam, S., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carretero, J., Costanzi, M., Pereira, M.E.S., De Vicente, J., Desai, S., Ferrero, I., Flaugher, B., Gerdes, D.W., Gutierrez, G., Hinton, S.R., Hollowood, D.L., Honscheid, K., James, D.J., Lima, M., Menanteau, F., Mena-Fernández, J., Palmese, A., Paterno, M., Paz-Chinchón, F., Pieres, A., Malagón, A . A . Plazas, Rodriguez-Monroy, M., Sanchez, E., Schubnell, M., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M.E.C., Tarle, G., To, C., Weaverdyck, N. and Weller, J. 2023. Non-local contribution from small scales in galaxy-galaxy lensing: Comparison of mitigation schemes. Monthly Notices of the Royal Astronomical Society 522 (1) , pp. 412-425. 10.1093/mnras/stad847

[thumbnail of stad847.pdf] PDF - Published Version
Download (5MB)


Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3 × 2pt, had to discard a lot of signal to noise from small scales due to our inability to accurately model non-linearities and baryonic effects. Galaxy–galaxy lensing, or the position–shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale θ or physical scale R carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently, there have been a few independent efforts that aim to mitigate the non-locality of the galaxy–galaxy lensing signal. Here, we perform a comparison of the different methods, including the Y-transformation, the point-mass marginalization methodology, and the annular differential surface density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy–galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like set-up and also when applied to DES Y3 data. With the LSST Y1 set-up, we find that the mitigation schemes yield ∼1.3 times more constraining S8 results than applying larger scale cuts without using any mitigation scheme.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Advanced Research Computing @ Cardiff (ARCCA)
Physics and Astronomy
Publisher: Oxford University Press
ISSN: 0035-8711
Date of First Compliant Deposit: 14 April 2023
Date of Acceptance: 17 March 2023
Last Modified: 17 Jun 2024 14:17

Citation Data

Cited 2 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics