Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

A performance evaluation of overground gait training with a mobile body weight support system using wearable sensors

Dong, Zonghao, Luces, Jose Victorio Salazar, Ravankar, Ankit A., Tafrishi, Seyed Amir ORCID: and Hirata, Yasuhisa 2023. A performance evaluation of overground gait training with a mobile body weight support system using wearable sensors. IEEE Sensors Journal 23 (11) , pp. 12209-12223. 10.1109/JSEN.2023.3269031

[thumbnail of z.dong_IEEE_SENSORS_2023.pdf]
PDF - Accepted Post-Print Version
Available under License Creative Commons Attribution.

Download (17MB) | Preview


Overground gait training under body weight support (BWS) for patients who suffer from neurological injuries has been proven practical in recovering from walking ability. Conventionally, skilled therapists or additional robots are required to assist the patient’s body weight and pelvis movement, making the rehabilitation process physically and economically burdensome. We investigate if a BWS walker using only two actuators can support the user’s body weight and simultaneously protect/assist the transverse pelvis rotation, improving natural gait with minimal motion compensation. In this paper, a BWS strategy called transverse pelvis rotation support (TPRS) is proposed to enable the BWS system to generate cable tension in the forward direction, as a purpose to support transverse pelvis rotation in addition to our previously proposed static or variable BWS. Wearable sensory devices, including instrumented shoes and harness, were developed to provide real-time ground reaction force and pelvis rotation signals simultaneously. Ten non-disabled participants were unloaded with 0% ~ 15% BWS under four different controls. Vertical ground reaction force, transverse pelvis kinematics, and user experience were compared using proposed controls. One-Way repeated measures ANOVA analysis assessed if control strategies generally affect the performance. All proposed controls enable the walker to support part of the user’s body weight. SBWS-TPRS and VBWS-TPRS control enable users to achieve a significantly improved pelvic motion and prolonged single support phase than pure static BWS or variable BWS, although users perceive a higher workload under them. The proposed BWS controls show the potential to become a complementary method in gait rehabilitation.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Publisher: Institute of Electrical and Electronics Engineers
ISSN: 1530-437X
Date of First Compliant Deposit: 2 May 2023
Date of Acceptance: 5 April 2023
Last Modified: 13 Jul 2023 16:29

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics