Hao, Xinyue and Demir, Emrah ORCID: https://orcid.org/0000-0002-4726-2556 2024. Artificial intelligence in supply chain decision-making: An environmental, social, and governance triggering and technological inhibiting protocol. Journal of Modelling in Management 19 (2) , pp. 605-629. 10.1108/JM2-01-2023-0009 |
PDF
- Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial. Download (409kB) |
Abstract
Purpose Decision-making, reinforced by artificial intelligence (AI), is predicted to become potent tool within the domain of supply chain management. Considering the importance of this subject, the purpose of this study is to explore the triggers and technological inhibitors affecting the adoption of AI. This study also aims to identify three-dimensional triggers, notably those linked to environmental, social, and governance (ESG), as well as technological inhibitors. Design/methodology/approach Drawing upon a six-step systematic review following the preferred reporting items for systematic reviews and meta analysis (PRISMA) guidelines, a broad range of journal publications was recognized, with a thematic analysis under the lens of the ESG framework, offering a unique perspective on factors triggering and inhibiting AI adoption in the supply chain. Findings In the environmental dimension, triggers include product waste reduction and greenhouse gas emissions reduction, highlighting the potential of AI in promoting sustainability and environmental responsibility. In the social dimension, triggers encompass product security and quality, as well as social well-being, indicating how AI can contribute to ensuring safe and high-quality products and enhancing societal welfare. In the governance dimension, triggers involve agile and lean practices, cost reduction, sustainable supplier selection, circular economy initiatives, supply chain risk management, knowledge sharing and the synergy between supply and demand. The inhibitors in the technological category present challenges, encompassing the lack of regulations and rules, data security and privacy concerns, responsible and ethical AI considerations, performance and ethical assessment difficulties, poor data quality, group bias and the need to achieve synergy between AI and human decision-makers. Research limitations/implications Despite the use of PRISMA guidelines to ensure a comprehensive search and screening process, it is possible that some relevant studies in other databases and industry reports may have been missed. In light of this, the selected studies may not have fully captured the diversity of triggers and technological inhibitors. The extraction of themes from the selected papers is subjective in nature and relies on the interpretation of researchers, which may introduce bias. Originality/value The research contributes to the field by conducting a comprehensive analysis of the diverse factors that trigger or inhibit AI adoption, providing valuable insights into their impact. By incorporating the ESG protocol, the study offers a holistic evaluation of the dimensions associated with AI adoption in the supply chain, presenting valuable implications for both industry professionals and researchers. The originality lies in its in-depth examination of the multifaceted aspects of AI adoption, making it a valuable resource for advancing knowledge in this area.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Business (Including Economics) |
Publisher: | Emerald |
ISSN: | 1746-5664 |
Date of First Compliant Deposit: | 14 July 2023 |
Date of Acceptance: | 24 June 2023 |
Last Modified: | 11 Nov 2024 00:45 |
URI: | https://orca.cardiff.ac.uk/id/eprint/161024 |
Actions (repository staff only)
Edit Item |