Corley, Rebecca B., Dawson, Will and Bishop, Tom R. 2023. A simple method to account for thermal boundary layers during the estimation of CTmax in small ectotherms. Journal of Thermal Biology 116 , 103673. 10.1016/j.jtherbio.2023.103673 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
As temperatures rise, understanding how ectotherms will become impacted by thermal stress is of critical importance. In this context, many researchers quantify critical temperatures – these are the upper (CTmax) and lower (CTmin) thermal limits at which organisms can no longer function. Most studies estimate CTs using bath-based methods where organisms are submerged within a set thermal environment. Plate-based methods (i.e. hot plates), however, offer huge opportunity for automation and are readily available in many lab settings. Plates, however, generate a unidirectional thermal boundary layer above their surface which means that the temperatures experienced by organisms of different sizes is different. This boundary layer effect can bias estimates of critical temperatures. Here, we test the hypothesis that biases in critical temperature estimation on hot plates are driven by organism height. We also quantify the composition of the boundary layer in order to correct for these biases. We assayed four differently sized species of UK ants for their CTmax in dry baths (with no boundary layer) and on hot plates (with a boundary layer). We found that hot plates overestimated the CTmax values of the different ants, and that this overestimate was larger for taller species. By statistically modelling the thickness of the thermal boundary layer, and combining with estimates of species height, we were able to correct this overestimation and eliminate methodological differences. Our study provides two main findings. First, we provide evidence that organism height is positively related to the bias present in plate-based estimates of CTmax. Second, we show that a relatively simple statistical model can correct for this bias. By using simple corrections for boundary layer effects, as we have done here, researchers could open up a new possibility space in the design and implementation of thermal tolerance assays using plates rather than restrictive dry or water baths.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Biosciences |
Publisher: | Elsevier |
ISSN: | 0306-4565 |
Date of First Compliant Deposit: | 8 August 2023 |
Date of Acceptance: | 13 July 2023 |
Last Modified: | 09 Aug 2023 22:36 |
URI: | https://orca.cardiff.ac.uk/id/eprint/161516 |
Actions (repository staff only)
Edit Item |