Alymani, Abdulrahman, Jabi, Wassim ORCID: https://orcid.org/0000-0002-2594-9568 and Corcoran, Padraig ORCID: https://orcid.org/0000-0001-9731-3385 2023. Modelling the relationships between ground and buildings using 3D architectural topological models utilising graph machine learning. Presented at: 6th International Symposium on Formal Methods in Architecture (6FMA), 24-28 May 2022. Published in: Mona, Plácido Lizancos, Viana, David Leite, Morais, Franklim and Vaz, Jorge Vieira eds. Formal Methods in Architecture. FMA 2022. Digital Innovations in Architecture, Engineering and Construction. Singapore: Springer, pp. 287-305. 10.1007/978-981-99-2217-8_16 |
Preview |
PDF
- Accepted Post-Print Version
Download (1MB) | Preview |
Abstract
Historically, architects have established different approaches to constructing their buildings on the ground. Classifying the building/ground relationship enables the architect to make informed design decisions during the early design stages. Manual handling of this task is time-consuming, complex as well as prone to errors. This paper leveraged Machine Learning (ML) methods to overcome this difficulty by applying Graph Machine Learning (GML) to 3D topological models, to classify the building and ground relationship. The paper workflow comprised two stages. The first stage involved generating 3D synthetic architectural precedents and created a dataset of their dual graph using Topologic, which is software that computes the spatial relationships between elements. The second stage ran the Deep Graph Convolutional Neural Network (DGCNN) using PyTorch, which is a Python machine learning library developed by Facebook. The paper’s results demonstrate that the system effectively classifies the relationship between building and ground, with the ability to predict a new previously unseen architectural building/ground relationship with high accuracy measurement that aligns with DGCNNs benchmark graphs. The paper concludes by reflecting on the advantages and disadvantages of generating a sizeable synthetic dataset with embedded semantic topological graphs as a formal design method, in addition to outlining future work.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Architecture Computer Science & Informatics |
Publisher: | Springer |
ISBN: | 9789819922161 |
Date of First Compliant Deposit: | 9 August 2023 |
Last Modified: | 02 Aug 2024 01:30 |
URI: | https://orca.cardiff.ac.uk/id/eprint/161525 |
Actions (repository staff only)
Edit Item |