Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Advanced diffusion-weighted MRI for cancer microstructure assessment in body imaging, and its relationship with histology

Fokkinga, Ella, Hernandez-Tamames, Juan A., Ianus, Andrada, Nilsson, Markus, Tax, Chantal M. W. ORCID: https://orcid.org/0000-0002-7480-8817, Perez-Lopez, Raquel and Grussu, Francesco 2024. Advanced diffusion-weighted MRI for cancer microstructure assessment in body imaging, and its relationship with histology. Journal of Magnetic Resonance Imaging 60 (4) , pp. 1278-1304. 10.1002/jmri.29144

[thumbnail of Fokkinga2023_doi_GreenOpenAccess (1).pdf]
Preview
PDF - Accepted Post-Print Version
Download (3MB) | Preview

Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in body imaging (ie, not including the nervous system) in oncology, and to analyze its value as compared to reference colocalized histology measurements, given that demonstrating the histological validity of any new DW-MRI method is essential. In this article, we review the current landscape of DW-MRI techniques that extend standard apparent diffusion coefficient (ADC), describing their acquisition protocols, signal models, fitting settings, microstructural parameters, and relationship with histology. Preclinical, clinical, and in/ex vivo studies were included. The most used techniques were intravoxel incoherent motion (IVIM; 36.3% of used techniques), diffusion kurtosis imaging (DKI; 16.7%), vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT; 13.3%), and imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED; 11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-relaxometry. The reviewed approaches provide histologically meaningful indices of cancer microstructure (eg, vascularization/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity to microscopic pathological processes. Future work of the community should focus on improving the inter-/intra-scanner robustness, and on assessing histological validity in broader contexts.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Cardiff University Brain Research Imaging Centre (CUBRIC)
Publisher: Wiley
ISSN: 1053-1807
Funders: ALF, Cancer Foundation, CRIS Cancer Foundation, Fundación Científica Asociación Española Contra el Cáncer, Fundación Fero, Instituto de Salud Carlos III, 'la Caixa' Foundation, Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Prostate Cancer Foundation, Vetenskapsrådet, Wellcome Trust
Date of First Compliant Deposit: 21 December 2023
Date of Acceptance: 31 October 2023
Last Modified: 30 Nov 2024 02:45
URI: https://orca.cardiff.ac.uk/id/eprint/165027

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics