Fokkinga, Ella, Hernandez-Tamames, Juan A., Ianus, Andrada, Nilsson, Markus, Tax, Chantal M. W. ORCID: https://orcid.org/0000-0002-7480-8817, Perez-Lopez, Raquel and Grussu, Francesco
2023.
Advanced diffusion-weighted MRI for cancer microstructure assessment in body imaging, and its relationship with histology.
Journal of Magnetic Resonance Imaging
10.1002/jmri.29144
Item availability restricted. |
PDF
- Accepted Post-Print Version
Restricted to Repository staff only until 30 November 2024 due to copyright restrictions. Download (3MB) |
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed. The objective of this article is to review the state-of-the-art of DW-MRI in body imaging (ie, not including the nervous system) in oncology, and to analyze its value as compared to reference colocalized histology measurements, given that demonstrating the histological validity of any new DW-MRI method is essential. In this article, we review the current landscape of DW-MRI techniques that extend standard apparent diffusion coefficient (ADC), describing their acquisition protocols, signal models, fitting settings, microstructural parameters, and relationship with histology. Preclinical, clinical, and in/ex vivo studies were included. The most used techniques were intravoxel incoherent motion (IVIM; 36.3% of used techniques), diffusion kurtosis imaging (DKI; 16.7%), vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT; 13.3%), and imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED; 11.7%). Another notable category of techniques relates to innovative b-tensor diffusion encoding or joint diffusion-relaxometry. The reviewed approaches provide histologically meaningful indices of cancer microstructure (eg, vascularization/cellularity) which, while not necessarily accurate numerically, may still provide useful sensitivity to microscopic pathological processes. Future work of the community should focus on improving the inter-/intra-scanner robustness, and on assessing histological validity in broader contexts.
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | In Press |
Schools: | Physics and Astronomy Cardiff University Brain Research Imaging Centre (CUBRIC) |
Publisher: | Wiley |
ISSN: | 1053-1807 |
Funders: | ALF, Cancer Foundation, CRIS Cancer Foundation, Fundación Científica Asociación Española Contra el Cáncer, Fundación Fero, Instituto de Salud Carlos III, 'la Caixa' Foundation, Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Prostate Cancer Foundation, Vetenskapsrådet, Wellcome Trust |
Date of First Compliant Deposit: | 21 December 2023 |
Date of Acceptance: | 31 October 2023 |
Last Modified: | 22 Aug 2024 21:53 |
URI: | https://orca.cardiff.ac.uk/id/eprint/165027 |
Actions (repository staff only)
Edit Item |