Banerjee, Srimanta, Dewangan, Gulab C., Knigge, Christian, Georganti, Maria, Gandhi, Poshak, Mithun, N. P. S., Saikia, Payaswini, Bhattacharya, Dipankar, Russell, David M., Lewis, Fraser and Zdziarski, Andrzej A.
2024.
A multiwavelength study of the hard and soft states of MAXI J1820+070 during its 2018 outburst.
The Astrophysical Journal
964
(2)
, 189.
10.3847/1538-4357/ad24ef
![]() |
![]() |
PDF
- Published Version
Download (5MB) |
Abstract
We present a comprehensive multiwavelength spectral analysis of the black hole (BH) X-ray binary MAXI J1820+070 during its 2018 outburst, utilizing AstroSat far-UV, soft X-ray, and hard X-ray data, along with (quasi-)simultaneous optical and X-ray data from the Las Cumbres Observatory and NICER, respectively. In the soft state, we detect soft X-ray and UV/optical excess components over and above the intrinsic accretion disk emission (kT in ∼ 0.58 keV) and a steep X-ray power-law component. The soft X-ray excess is consistent with a high-temperature blackbody (kT ∼ 0.79 keV), while the UV/optical excess is described by UV emission lines and two low-temperature blackbody components (kT ∼ 3.87 and ∼0.75 eV). Employing continuum spectral fitting, we determine the BH spin parameter (a = 0.77 ± 0.21), using the jet inclination angle of 64° ± 5° and a mass spanning 5–10 M ☉. In the hard state (HS), we observe a significantly enhanced optical/UV excess component, indicating a stronger reprocessed emission in the outer disk. Broadband X-ray spectroscopy in the HS reveals a two-component corona, each associated with its reflection component, in addition to the disk emission (kT in ∼ 0.19 keV). The softer coronal component dominates the bolometric X-ray luminosity and produces broader relativistic reflection features, while the harder component gets reflected far from the inner disk, yielding narrow reflection features. Furthermore, our analysis in the HS suggests a substantial truncation of the inner disk (≳51 gravitational radii) and a high disk density (∼1020 cm−3).
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Physics and Astronomy |
Additional Information: | License information from Publisher: LICENSE 1: URL: http://creativecommons.org/licenses/by/4.0/, Type: cc-by |
Publisher: | American Astronomical Society |
ISSN: | 0004-637X |
Date of First Compliant Deposit: | 2 April 2024 |
Date of Acceptance: | 30 January 2024 |
Last Modified: | 02 Apr 2024 10:00 |
URI: | https://orca.cardiff.ac.uk/id/eprint/167650 |
Actions (repository staff only)
![]() |
Edit Item |