Guo, Yanzhao, Hadden, John P. ORCID: https://orcid.org/0000-0001-5407-6754, Clark, Rachel N., Bishop, Samuel G. and Bennett, Anthony J. ORCID: https://orcid.org/0000-0002-5386-3710 2024. Emission dynamics of optically driven aluminum nitride quantum emitters. Physical Review B 110 , 014109. 10.1103/PhysRevB.110.014109 |
PDF
- Accepted Post-Print Version
Download (7MB) |
Abstract
Aluminum nitride is a technologically important wide band-gap semiconductor which has been shown to host bright quantum emitters. We use photon emission correlation spectroscopy (PECS), time-resolved photoluminescence (TRPL), and state-population dynamic simulations to probe the dynamics of emission under continuous wave (CW) and pulsed optical excitation. We infer that there are at least four dark shelving states, which govern the TRPL, bunching, and saturation of the optical transition. We study in detail the emission dynamics of two quantum emitters (QEs) with differing power-dependent shelving processes, hypothesized to result from charge ionization and recombination. These results demonstrate that photon bunching caused by shelving the system in a dark state inherently limits the saturation rate of the photon source. In emitters where increasing optical power deshelves the dark states, we observe an increased photon emission intensity.
Item Type: | Article |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Engineering |
ISSN: | 1095-3795 |
Date of First Compliant Deposit: | 9 July 2024 |
Date of Acceptance: | 28 June 2024 |
Last Modified: | 25 Jul 2024 23:35 |
URI: | https://orca.cardiff.ac.uk/id/eprint/170439 |
Actions (repository staff only)
Edit Item |