Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Drivers of spatiotemporal patterns of riparian forest NDVI along a hydroclimatic gradient

Lochin, Pierre, Piégay, Hervé, Stella, John C., Caylor, Kelly K., Vaudor, Lise and Singer, Michael Bliss ORCID: https://orcid.org/0000-0002-6899-2224 2024. Drivers of spatiotemporal patterns of riparian forest NDVI along a hydroclimatic gradient. Ecohydrology 10.1002/eco.2729

[thumbnail of Ecohydrology - 2024 - Lochin - Drivers of Spatiotemporal Patterns of Riparian Forest NDVI Along a Hydroclimatic Gradient.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (6MB) | Preview

Abstract

In the context of rising global temperatures and their impact on weather patterns and water cycles, understanding the relationship between vegetation and hydroclimatic forcing is critical. Riparian forests are highly vulnerable to hydroclimatic variability, which can significantly affect water availability in the soil on which they primarily depend. Along large rivers, hydroclimatic forcings can vary, resulting in different vegetative responses depending on the local climatic context and site conditions. To explore this, we studied riparian forest greenness along a 512-km river corridor with a 3° latitudinal gradient, analysing the relative contributions of climate (latitude, season, temperature, precipitation) and local hydrological conditions (groundwater). Here, we show that riparian forests along a latitudinal gradient respond differently to hydroclimatic controls, with vegetative dynamics that can be attenuated or accentuated by local site conditions. We combined Sentinel-2 satellite Normalised Difference Vegetation Index (NDVI) data over seven years (2016–2022) with hydroclimatic data to examine riparian forest greenness responses to latitudinal, seasonal and interannual hydroclimatic variability. We found contrasting hydroclimatic controls across the latitudinal gradient, with the northernmost sites predominantly controlled by temperature, while those further south are limited by water availability. In addition, we identified temperature as the primary driver of NDVI throughout the growing season, either positively or negatively. Late season precipitation and high phreatic water availability positively influenced NDVI, emphasising the role of local conditions in governing riparian forest resilience. This study enhances understanding of climate controls on riparian tree greenness, which is critical for designing effective landscape-scale riparian ecosystem management and restoration strategies.

Item Type: Article
Date Type: Published Online
Status: In Press
Schools: Earth and Environmental Sciences
Water Research Institute (WATER)
Publisher: Wiley
ISSN: 1936-0584
Date of First Compliant Deposit: 10 October 2024
Date of Acceptance: 3 October 2024
Last Modified: 29 Oct 2024 10:34
URI: https://orca.cardiff.ac.uk/id/eprint/172790

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics