Ghigna, Tommaso, Adler, Alexander, Aizawa, Kosuke, Akamatsu, Hiroki, Akizawa, Ryosuke, Allys, Erwan, Anand, Avinash, Aumont, Jonathan, Austermann, Jason, Azzoni, Susanna, Baccigalupi, Carlo, Ballardini, Mario, Banday, Anthony, Barreiro, Rita, Bartolo, Nicola, Basak, Soumen, Basyrov, Artem, Beckman, Shawn, Bersanelli, Marco, Bortolami, Marco, Bouchet, François, Brinckmann, Thejs, Campeti, Paolo, Carinos, Emile, Carones, Alessandro, Casas, Francisco J., Cheung, Kolen, Chinone, Yuji, Clermont, Lionel, Columbro, Fabio, Coppolecchia, Alessandro, Curtis, David, de Bernardis, Paolo, de Haan, Tijmen, de la Hoz, Elena, De Petris, Marco, Della Torre, Stefano, Delle Monache, Giovanni, Di Giorgi, Eugenia, Dickinson, Clive, Diego-Palazuelos, Patricia, Díaz García, Jose, Dobbs, Matt, Dotani, Tadayasu, Eriksen, Hans Kristian, Errard, Josquin, Essinger-Hileman, Thomas, Farias, Nicole, Ferreira, Elisa, Franceschet, Cristian, Fuskeland, Unni, Galloni, Giacomo, Galloway, Mathew, Ganga, Ken, Gerbino, Martina, Gervasi, Massimo, Génova-Santos, Ricardo, Giardiello, Serena, Gimeno-Amo, Christian, Gjerløw, Eirik, González González, Raul, Grandsire, Laurent, Gruppuso, Alessandro, Halverson, Nils, Hargrave, Peter ORCID: https://orcid.org/0000-0002-3109-6629, Harper, Stuart, Hazumi, Masashi, Henrot-Versillé, Sophie, Hergt, Lukas, Herranz, Diego, Hivon, Eric, Hlozek, Renee, Hoang, Thuong, Hubmayr, Johannes, Ichiki, Kiyotomo, Ikuma, Kiyoshi, Ishino, Hirokazu, Jaehnig, Gregory, Jost, Baptiste, Kohri, Kazunori, Konishi, Kuniaki, Lamagna, Luca, Lattanzi, Massimiliano, Leloup, Clement, Levrier, François, Lanoppan, Anto, Luzzi, Gemma, Macias-Perez, Juan, Maffei, Bruno, Marchitelli, Elisabetta, Martínez-González, Enrique, Masi, Silvia, Matarrese, Sabino, Matsumura, Tomotake, Micheli, Silvia, Migliaccio, Marina, Monelli, Marta, Montier, Ludovic, Morgante, Gianluca, Mousset, Louise, Nagano, Yuya, Nagata, Ryo, Natoli, Paolo, Novelli, Alessandro, Noviello, Fabio, Obata, Ippei, Occhiuzzi, Andrea, Odagiri, Kimihide, Omae, Ryuji, Pagano, Luca, Paiella, Alessandro, Paoletti, Daniela, Pascual-Cisneros, Guillermo, Patanchon, Guillaume, Pavlidou, Vasiliki, Piacentini, Francesco, Piat, Michel, Piccirilli, Giulia, Pinchera, Michele, Pisano, Giampaolo, Porcelli, Luca, Raffuzzi, Nicolò Elia, Raum, Christopher, Remazeilles, Mathieu, Ritacco, Alessia, Rubino-Martin, Jose Alberto, Ruiz-Granda, Miguel, Sakurai, Yuki, Savini, Giorgio, Scott, Douglas, Sekimoto, Yutaro, Shiraishi, Maresuke, Signorelli, Giovanni, Stever, Samantha L., Sullivan, Raelyn, Suzuki, Aritoki, Takaku, Ryota, Takakura, Hayato, Takakura, Satoru, Takase, Yusuke, Tartari, Andrea, Tassis, Konstantinos, Thompson, Keith L., Tomasi, Maurizio, Tristram, Matthieu, Tucker, Carole ORCID: https://orcid.org/0000-0002-1851-3918, Vacher, Léo, van Tent, Bartjan, Vielva, Patricio, Watanuki, Kazuya, Wehus, Ingunn Kathrine, Westbrook, Benjamin, Weymann-Despres, Gilles, Winter, Berend, Wollack, Edward J., Zacchei, Andrea, Zannoni, Mario, Zhou, Yu, Coyle, Laura E., Perrin, Marshall D. and Matsuura, Shuji 2024. The LiteBIRD mission to explore cosmic inflation. Presented at: SPIE Astronomical Telescopes + Instrumentation, Yokohama, Japan, 16-22 June 2024. Published in: Coyle, Laura E., Matsuura, Shuji and Perrin, Marshall D. eds. Proceedings Volume 13092, Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave;. Proceedings of SPIE. Society of Photo-optical Instrumentation Engineers, 10.1117/12.3021377 |
Abstract
LiteBIRD, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan’s fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping of the CMB polarization across the entire sky. During its 3-year mission, LiteBIRD will employ three telescopes within 15 unique frequency bands (ranging from 34 through 448 GHz), targeting a sensitivity of 2.2 μK-arcmin and a resolution of 0.5° at 100 GHz. Its primary goal is to measure the tensor-toscalar ratio r with an uncertainty δr = 0.001, including systematic errors and margin. If r ≥ 0.01, LiteBIRD expects to achieve a > 5σ detection in the ℓ = 2–10 and ℓ = 11–200 ranges separately, providing crucial insight into the early Universe. We describe LiteBIRD’s scientific objectives, the application of systems engineering to mission requirements, the anticipated scientific impact, and the operations and scanning strategies vital to minimizing systematic effects. We will also highlight LiteBIRD’s synergies with concurrent CMB projects.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Date Type: | Published Online |
Status: | Published |
Schools: | Physics and Astronomy |
Publisher: | Society of Photo-optical Instrumentation Engineers |
ISBN: | 978-151067507-0 |
ISSN: | 0277-786X |
Date of First Compliant Deposit: | 15 November 2024 |
Date of Acceptance: | 10 September 2024 |
Last Modified: | 09 Dec 2024 16:49 |
URI: | https://orca.cardiff.ac.uk/id/eprint/174034 |
Actions (repository staff only)
Edit Item |