Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Transforming US agriculture for carbon removal with enhanced weathering

Beerling, David J., Kantzas, Euripides P., Lomas, Mark R., Taylor, Lyla L., Zhang, Shuang, Kanzaki, Yoshiki, Eufrasio, Rafael M., Renforth, Phil, Mecure, Jean-Francois, Pollitt, Hector, Holden, Philip B., Edwards, Neil R., Koh, Lenny, Epihov, Dimitar Z., Wolf, Adam, Hansen, James E., Banwart, Steven A., Pidgeon, Nick F. ORCID: https://orcid.org/0000-0002-8991-0398, Reinhard, Christopher T., Planavsky, Noah J. and Val Martin, Maria 2025. Transforming US agriculture for carbon removal with enhanced weathering. Nature 638 (8050) , pp. 425-434. 10.1038/s41586-024-08429-2

[thumbnail of Pidgeon. Transforming US Agriculture for . pub.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (14MB) | Preview

Abstract

Enhanced weathering (EW) with agriculture uses crushed silicate rocks to drive carbon dioxide removal (CDR)1,2. If widely adopted on farmlands, it could help achieve net-zero emissions by 20502,3,4. Here we show, with a detailed US state-specific carbon cycle analysis constrained by resource provision, that EW deployed on agricultural land could sequester 0.16–0.30 GtCO2 yr−1 by 2050, rising to 0.25–0.49 GtCO2 yr−1 by 2070. Geochemical assessment of rivers and oceans suggests effective transport of dissolved products from EW from soils, offering CDR on intergenerational timescales. Our analysis further indicates that EW may temporarily help lower ground-level ozone and concentrations of secondary aerosols in agricultural regions. Geospatially mapped CDR costs show heterogeneity across the USA, reflecting a combination of cropland distance from basalt source regions, timing of EW deployment and evolving CDR rates. CDR costs are highest in the first two decades before declining to about US$100–150 tCO2−1 by 2050, including for states that contribute most to total national CDR. Although EW cannot be a substitute for emission reductions, our assessment strengthens the case for EW as an overlooked practical innovation for helping the USA meet net-zero 2050 goals5,6. Public awareness of EW and equity impacts of EW deployment across the USA require further exploration7,8 and we note that mobilizing an EW industry at the necessary scale could take decades.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Psychology
Publisher: Nature Publishing Group
ISSN: 0028-0836
Date of First Compliant Deposit: 14 February 2025
Date of Acceptance: 19 November 2024
Last Modified: 14 Feb 2025 15:33
URI: https://orca.cardiff.ac.uk/id/eprint/176205

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics