Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Experimental study of two-bite test parameters for effective drug release from chewing gum using a novel bio-engineered testbed

Alemzadeh, Kazem and Alemzadeh, Joseph 2025. Experimental study of two-bite test parameters for effective drug release from chewing gum using a novel bio-engineered testbed. Biomedicines 13 (8) , 1811. 10.3390/biomedicines13081811

[thumbnail of biomedicines-13-01811-v2.pdf] PDF - Published Version
Available under License Creative Commons Attribution.

Download (4MB)
License URL: https://creativecommons.org/licenses/by/4.0/
License Start date: 24 July 2025

Abstract

Background: A critical review of the literature demonstrates that masticatory apparatus with an artificial oral environment is of interest in the fields including (i) dental science; (ii) food science; (iii) the pharmaceutical industries for drug release. However, apparatus that closely mimics human chewing and oral conditions has yet to be realised. This study investigates the vital role of dental morphology and form–function connections using two-bite test parameters for effective drug release from medicated chewing gum (MCG) and compares them to human chewing efficiency with the aid of a humanoid chewing robot and a bionics product lifecycle management (PLM) framework with built-in reverse biomimetics—both developed by the first author. Methods: A novel, bio-engineered two-bite testbed is created for two testing machines with compression and torsion capabilities to conduct two-bite tests for evaluating the mechanical properties of MCGs. Results: Experimental studies are conducted to investigate the relationship between biting force and crushing/shearing and understand chewing efficiency and effective mastication. This is with respect to mechanochemistry and power stroke for disrupting mechanical bonds releasing the active pharmaceutical ingredients (APIs) of MCGs. The manuscript discusses the effect and the critical role that jaw physiology, dental morphology, the Bennett angle of mandible (BA) and the Frankfort-mandibular plane angle (FMA) on two-bite test parameters when FMA = 0, 25 or 29.1 and BA = 0 or 8. Conclusions: The impact on other scientific fields is also explored.

Item Type: Article
Date Type: Published Online
Status: Published
Schools: Schools > Engineering
Additional Information: License information from Publisher: LICENSE 1: URL: https://creativecommons.org/licenses/by/4.0/, Start Date: 2025-07-24
Publisher: MDPI
Date of First Compliant Deposit: 4 August 2025
Date of Acceptance: 16 July 2025
Last Modified: 04 Aug 2025 11:15
URI: https://orca.cardiff.ac.uk/id/eprint/180232

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics