Ruiz-Granda, M., Diego-Palazuelos, P., Gimeno-Amo, C., Vielva, P., Lonappan, A.I., Namikawa, T., Génova-Santos, R.T., Lembo, M., Nagata, R., Remazeilles, M., Adak, D., Allys, E., Anand, A., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A.J., Barreiro, R.B., Bartolo, N., Basak, S., Bersanelli, M., Besnard, A., Blinov, D., Bortolami, M., Bouchet, F., Brinckmann, T., Cacciotti, F., Calabrese, E., Campeti, P., Carones, A., Casas, F.J., Cheung, K., Citran, M., Clermont, L., Columbro, F., Coppolecchia, A., Bernardis, P., Haan, T., Hoz, E., Lucia, M.D., Torre, S.D., Giorgi, E.D., Eriksen, H.K., Finelli, F., Franceschet, C., Fuskeland, U., Galloni, G., Galloway, M., Gervasi, M., Ghigna, T., Giardiello, S., Gruppuso, A., Hazumi, M., Hergt, L.T., Hivon, E., Ichiki, K., Jiang, H., Jost, B., Kohri, K., Lamagna, L., Lattanzi, M., Leloup, C., Levrier, F., López-Caniego, M., Luzzi, G., Macias-Perez, J., Maranchery, V., Martínez-González, E., Masi, S., Matarrese, S., Matsumura, T., Micheli, S., Monelli, M., Montier, L., Morgante, G., Najafi, M., Novelli, A., Noviello, F., Obata, I., Occhiuzzi, A., Paiella, A., Paoletti, D., Pascual-Cisneros, G., Piacentini, F., Piccirilli, G., Polenta, G., Porcelli, L., Raffuzzi, N., Rizzieri, A., Rubiño-Martín, J.A., Sakurai, Y., Sanghavi, J., Scott, D., Shiraishi, M., Signorelli, G., Sullivan, R.M., Takase, Y., Terenzi, L., Tomasi, M., Tristram, M., Vacher, L., Tent, B., Wehus, I.K., Weymann-Despres, G. and Zhou, Y. 2025. LiteBIRD science goals and forecasts: Improved full-sky reconstruction of the gravitational lensing potential through the combination of Planck and LiteBIRD data. [Online]. arXiv: Cornell University. Available at: https://doi.org/10.48550/arXiv.2507.22618 |
Abstract
Cosmic microwave background (CMB) photons are deflected by large-scale structure through gravitational lensing. This secondary effect introduces higher-order correlations in CMB anisotropies, which are used to reconstruct lensing deflections. This allows mapping of the integrated matter distribution along the line of sight, probing the growth of structure, and recovering an undistorted view of the last-scattering surface. Gravitational lensing has been measured by previous CMB experiments, with 's detection being the current best full-sky lensing map. We present an enhanced lensing map by extending the CMB multipole range and including the minimum-variance estimation, leading to a to detection over of the sky, depending on the final complexity of polarized Galactic emission. The combination of and will be the best full-sky lensing map in the 2030s, providing a to detection over of the sky, almost doubling 's sensitivity. Finally, we explore different applications of the lensing map, including cosmological parameter estimation using a lensing-only likelihood and internal delensing, showing that the combination of both experiments leads to improved constraints. The combination of + will improve the constraint by a factor of 2 compared to , and + internal delensing will improve 's tensor-to-scalar ratio constraint by . We have tested the robustness of our results against foreground models of different complexity, showing that a significant improvement remains even for the most complex foregrounds.
Item Type: | Website Content |
---|---|
Date Type: | Submission |
Status: | Submitted |
Schools: | Schools > Physics and Astronomy |
Publisher: | Cornell University |
Date of Acceptance: | 7 August 2025 |
Last Modified: | 08 Aug 2025 10:27 |
URI: | https://orca.cardiff.ac.uk/id/eprint/180248 |
Actions (repository staff only)
![]() |
Edit Item |