Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

ArgRAG: Explainable retrieval augmented generation using quantitative bipolar argumentation

Zhu, Yuqicheng, Potyka, Nico, Hernández, Daniel, He, Yuan, Ding, Zifeng, Xiong, Bo, Zhou, Dongzhuoran, Kharlamov, Evgeny and Staab, Steffen 2025. ArgRAG: Explainable retrieval augmented generation using quantitative bipolar argumentation. Presented at: 19th International Conference on Neurosymbolic Learning and Reasoning (NeSy), USA, 8 - 10 September 2025. Proceedings of Machine Learning Research. , vol.284
Item availability restricted.

[thumbnail of 2025_NeSy_ArgRAG.pdf] PDF - Accepted Post-Print Version
Restricted to Repository staff only until 23 October 2025 due to copyright restrictions.

Download (3MB)
Item Type: Conference or Workshop Item (Paper)
Status: In Press
Schools: Schools > Computer Science & Informatics
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Date of First Compliant Deposit: 23 September 2025
Date of Acceptance: 20 April 2025
Last Modified: 23 Sep 2025 11:15
URI: https://orca.cardiff.ac.uk/id/eprint/181190

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics