Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Ship detection and identification for maritime security and safety based on IMO numbers using deep learning

Khan, Mohidul Hossain, Liu, Zonghua, Prabhu, Radhakrishna, Zheng, Haiyong and Javied, Asad 2024. Ship detection and identification for maritime security and safety based on IMO numbers using deep learning. Presented at: Security + Defence, Edinburgh, United Kingdom, 16-20 September 2024. Published in: Bouma, Henri, Yitzhaky, Yitzhak, Prabhu, Radhakrishna and Kuijf, Hugo J. eds. Proceedings Volume Artificial Intelligence for Security and Defence Applications II. , vol.13206 SPIE, 10.1117/12.3031425

Full text not available from this repository.

Abstract

In marine safety and security, the ability to rapidly, autonomously, and accurately detect and identify ships is the highest priority. This study presents a novel approach using deep learning to accurately identify ships based on their International Maritime Organisation (IMO) numbers. The performance of various sophisticated deep learning models, such as YOLOv8, RetinaNet, Faster R-CNN, EfficientDet, and DETR, was assessed in accurately identifying IMO numbers from images. The RetinaNet and Faster R-CNN models achieved the highest mAP50-95 scores of 70.0% and 64.1%, respectively, with inference times of low scale. On the other hand, YOLOv8, with a slightly better mAP50-95 of 65.1%, showed an exceptional balance between accuracy and speed (9.20 ms), making it well-suited for real-time applications. However, models like EfficientDet and DETR experienced difficulties achieving lower mAP50-95 values of 33.65% and 48.7%, respectively, especially when analysing low-resolution images. Following detection, the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) was used to improve the clarity of extracted IMO digits. It is followed by applying Easy Optical Character Recognition (EasyOCR) for accurate extraction. Despite the enhancements, minor identification errors continued, suggesting a requirement for additional refinement. These findings reveal the capacity of deep learning to significantly augment maritime security by enhancing the efficiency and precision of ship identification.

Item Type: Conference or Workshop Item (Paper)
Date Type: Publication
Status: Published
Schools: Schools > Biosciences
Publisher: SPIE
Last Modified: 08 Dec 2025 13:00
URI: https://orca.cardiff.ac.uk/id/eprint/182967

Actions (repository staff only)

Edit Item Edit Item