Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Patch-GAN transfer learning with reconstructive models for cloud removal

Ma, Wanli, Karakuş, Oktay ORCID: https://orcid.org/0000-0001-8009-9319 and Rosin, Paul L. ORCID: https://orcid.org/0000-0002-4965-3884 2025. Patch-GAN transfer learning with reconstructive models for cloud removal. Presented at: 2025 IEEE International Geoscience and Remote Sensing Symposium, Brisbane, Australia, 3-8 August 2025. Proceedings of the International Geoscience and Remote Sensing Symposium. IEEE, pp. 6275-6279. 10.1109/igarss55030.2025.11243736

Full text not available from this repository.

Abstract

Cloud removal plays a crucial role in enhancing remote sensing image analysis, yet accurately reconstructing cloud-obscured regions remains a significant challenge. Recent advancements in generative models have made the generation of realistic images increasingly accessible, offering new opportunities for this task. Given the conceptual alignment between image generation and cloud removal tasks, generative models present a promising approach for addressing cloud removal in remote sensing. In this work, we propose a deep transfer learning approach built on a generative adversarial network (GAN) framework to explore the potential of the novel masked autoencoder (MAE) image reconstruction model in cloud removal. Due to the complexity of remote sensing imagery, we further propose using a patch-wise discriminator to determine whether each patch of the image is real or not. The proposed reconstructive transfer learning approach demonstrates significant improvements in cloud removal performance compared to other GAN-based methods. Additionally, whilst direct comparisons with some of the state-of-the-art cloud removal techniques are limited due to unclear details regarding their train/test data splits, the proposed model achieves competitive results based on available benchmarks.

Item Type: Conference or Workshop Item (Paper)
Date Type: Published Online
Status: Published
Schools: Schools > Computer Science & Informatics
Publisher: IEEE
ISBN: 9798331508111
ISSN: 2153-6996
Last Modified: 11 Dec 2025 12:30
URI: https://orca.cardiff.ac.uk/id/eprint/183137

Actions (repository staff only)

Edit Item Edit Item