Abbott, B., Abbott, R., Adhikari, R., Agresti, J., Ajith, P., Allen, B., Amin, R., Anderson, S., Anderson, W., Arain, M., Araya, M., Armandula, H., Ashley, M., Aston, S., Aufmuth, P., Aulbert, C., Babak, S., Ballmer, S., Bantilan, H., Barish, B., Barker, C., Barker, D., Barr, B., Barriga, P., Barton, M., Bayer, K., Belczynski, K., Betzwieser, J., Beyersdorf, P., Bhawal, B., Bilenko, I., Billingsley, G., Biswas, R., Black, E., Blackburn, K., Blackburn, L., Blair, D., Bland, B., Bogenstahl, J., Bogue, L., Bork, R., Boschi, V., Bose, S., Brady, P., Braginsky, V., Brau, J., Brinkmann, M., Brooks, A., Brown, D., Bullington, A., Bunkowski, A., Buonanno, A., Burmeister, O., Busby, D., Byer, R., Cadonati, L., Cagnoli, G., Camp, J., Cannizzo, J., Cannon, K., Cantley, C., Cao, J., Cardenas, L., Casey, M., Castaldi, G., Cepeda, C., Chalkey, E., Charlton, P., Chatterji, S., Chelkowski, S., Chen, Y., Chiadini, F., Chin, D., Chin, E., Chow, J., Christensen, N., Clark, C., Cochrane, P., Cokelaer, Thomas, Colacino, C., Coldwell, R., Conte, R., Cook, D., Corbitt, T., Coward, D., Coyne, D., Creighton, J., Creighton, T., Croce, R., Crooks, D., Cruise, A., Cumming, A., Dalrymple, J., D'Ambrosio, E., Danzmann, K., Davies, Geraint, DeBra, D., Degallaix, J., Degree, M., Demma, T., Dergachev, V., Desai, S., DeSalvo, R., Dhurandhar, S., Díaz, M., Dickson, J., Di Credico, A., Diederichs, G., Dietz, Alexander, Doomes, E., Drever, R., Dumas, J.-C., Dupuis, R., Dwyer, J., Ehrens, P., Espinoza, E., Etzel, T., Evans, M., Evans, T., Fairhurst, Stephen ![]() ![]() ![]() ![]() ![]() ![]() |
Preview |
PDF
Download (1MB) | Preview |
Abstract
We searched for an anisotropic background of gravitational waves usingdata from the LIGO S4 science run and a method that is optimizedfor point sources. This is appropriate if, for example, the gravitationalwave background is dominated by a small number of distinct astrophysical sources.No signal was seen. Upper limit maps were produced assuming two differentpower laws for the source strain power spectrum. For an f-3 power law and using the50 Hz to 1.8 kHz band the upper limits on the sourcestrain power spectrum vary between 1.2×10-48 Hz-1 (100 Hz/f)3 and 1.2×10-47 Hz-1 (100 Hz/f)3, depending on the position in the sky. Similarly,in the case of constant strain power spectrum, the upper limits vary between 8.5×10-49 Hz-1 and 6.1×10-48 Hz-1. As a side product a limiton an isotropic background of gravitational waves was also obtained. All limitsare at the 90% confidence level. Finally, as an application, we focused onthe direction of Sco-X1, the brightest low-mass x-ray binary. We compare theupper limit on strain amplitude obtained by this method to expectations basedon the x-ray flux from Sco-X1.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy Medicine Cardiff University Brain Research Imaging Centre (CUBRIC) |
Subjects: | Q Science > QB Astronomy |
Additional Information: | 11 pages. |
Publisher: | American Physical Society |
ISSN: | 1550-7998 |
Last Modified: | 05 Jul 2024 20:15 |
URI: | https://orca.cardiff.ac.uk/id/eprint/21777 |
Citation Data
Cited 90 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |