Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

A 1,6-ring closure mechanism for (+)-δ-cadinene synthase?

Faraldos, Juan A., Miller, David James, Gonzalez, Veronica, Yoosuf-Aly, Fathima Zulfa, Cascón, Oscar, Li, Amang and Allemann, Rudolf Konrad ORCID: 2012. A 1,6-ring closure mechanism for (+)-δ-cadinene synthase? Journal of the American Chemical Society 134 (13) , pp. 5900-5908. 10.1021/ja211820p

Full text not available from this repository.


Recombinant (+)-δ-cadinene synthase (DCS) from Gossypium arboreum catalyzes the metal-dependent cyclization of (E,E)-farnesyl diphosphate (FDP) to the cadinane sesquiterpene δ-cadinene, the parent hydrocarbon of cotton phytoalexins such as gossypol. In contrast to some other sesquiterpene cyclases, DCS carries out this transformation with >98% fidelity but, as a consequence, leaves no mechanistic traces of its mode of action. The formation of (+)-δ-cadinene has been shown to occur via the enzyme-bound intermediate (3R)-nerolidyl diphosphate (NDP), which in turn has been postulated to be converted to cis-germacradienyl cation after a 1,10-cyclization. A subsequent 1,3-hydride shift would then relocate the carbocation within the transient macrocycle to expedite a second cyclization that yields the cadinenyl cation with the correct cis stereochemistry found in (+)-δ-cadinene. An elegant 1,10-mechanistic pathway that avoids the formation of (3R)-NDP has also been suggested. In this alternative scenario, the final cadinenyl cation is proposed to be formed through the intermediacy of trans, trans-germacradienyl cation and germacrene D. In addition, an alternative 1,6-ring closure mechanism via the bisabolyl cation has previously been envisioned. We report here a detailed investigation of the catalytic mechanism of DCS using a variety of mechanistic probes including, among others, deuterated and fluorinated FDPs. Farnesyl diphosphate analogues with fluorine at C2 and C10 acted as inhibitors of DCS, but intriguingly, after prolonged overnight incubations, they yielded 2F-germacrene(s) and a 10F-humulene, respectively. The observed 1,10-, and to a lesser extent, 1,11-cyclization activity of DCS with these fluorinated substrates is consistent with the postulated macrocyclization mechanism(s) en route to (+)-δ-cadinene. On the other hand, mechanistic results from incubations of DCS with 6F-FPP, (2Z,6E)-FDP, neryl diphosphate, 6,7-dihydro-FDP, and NDP seem to be in better agreement with the potential involvement of the alternative biosynthetic 1,6-ring closure pathway. In particular, the strong inhibition of DCS by 6F-FDP, coupled to the exclusive bisabolyl- and terpinyl-derived product profiles observed for the DCS-catalyzed turnover of (2Z,6E)-farnesyl and neryl diphosphates, suggested the intermediacy of α-bisabolyl cation. DCS incubations with enantiomerically pure [1-2H1](1R)-FDP revealed that the putative bisabolyl-derived 1,6-pathway proceeds through (3R)-nerolidyl diphosphate (NDP), is consistent with previous deuterium-labeling studies, and accounts for the cis stereochemistry characteristic of cadinenyl-derived sesquiterpenes. While the results reported here do not unambiguously rule in favor of 1,6- or 1,10-cyclization, they demonstrate the mechanistic versatility inherent to DCS and highlight the possible existence of multiple mechanistic pathways.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Cardiff Catalysis Institute (CCI)
Subjects: Q Science > QD Chemistry
Publisher: American Chemical Society
ISSN: 0002-7863
Last Modified: 06 Dec 2022 09:51

Citation Data

Cited 47 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item