Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Doubly deuterium-labeled patchouli alcohol from cyclization of singly labeled [2-2H1]farnesyl diphosphate catalyzed by recombinant patchoulol synthase

Faraldos, Juan A., Wu, Shuiqin, Chappell, Joe and Coates, Robert M. 2010. Doubly deuterium-labeled patchouli alcohol from cyclization of singly labeled [2-2H1]farnesyl diphosphate catalyzed by recombinant patchoulol synthase. Journal of the American Chemical Society 132 (9) , pp. 2998-3008. 10.1021/ja909251r

Full text not available from this repository.

Abstract

Incubations of isotopically pure [2-2H1](E,E)-farnesyl diphosphate with recombinant patchoulol synthase (PTS) from Pogostemon cablin afforded a 65:35 mixture of monodeuterated and dideuterated patchoulols as well as numerous sesquiterpene hydrocarbons. Extensive NMR analyses (1H and 13C NMR, 1H homodecoupling NMR, HMQC, and 2H NMR) of the labeled patchoulol mixture and comparisons of the spectra with those of unlabeled alcohol led to the conclusion that the deuterium label was located at positions (patchoulol numbering system) C5 (both isotopomers, ca. 100%) and C12 (minor isotopomer, 30−35%), that is, an approximately 2:1 mixture of [5-2H1]- and [5,12-2H2]-patchoulols. Low-resolution FIMS analyses and isotope ratio calculations further corroborated the composition of the mixture as mainly one singly deuterated and one doubly deuterated patchoulol. From a mechanistic point of view, the formation of [5,12-2H2]patchoulol is rationalized through the intermediacy of an unknown exocyclic [7,10:1,5]patchoul-4(12)-ene (15-d1), which could incorporate a deuteron at the C-12 position on the pathway to doubly labeled patchoulol. The corresponding depletion of deuterium content observed in the hydrocarbon coproducts, β-patchoulene and α-guaiene (55% d0), identified the source of the excess label found in patchoulol-d2. Comparison of the PTS amino acid sequence with those of other sesquiterpene synthases, and examination of an active site model, suggested that re-orientation of leucine 410 side chain in PTS might facilitate the creation of a 2-pocket active site where the observed deuteron transfers could occur. The retention of deuterium at C5 in the labeled patchoulol and its absence at C4 rule out an alternative mechanism involving two consecutive 1,2-hydride shifts and appears to confirm the previously proposed occurrence of a 1,3-hydride shift across the 5-membered ring. A new, semisystematic nomenclature is presented for the purpose of distinguishing the three different skeletal structures of the patchoulane sesquiterpenes.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Subjects: Q Science > QD Chemistry
Publisher: American Chemical Society
ISSN: 0002-7863
Last Modified: 23 Mar 2017 03:41
URI: https://orca.cardiff.ac.uk/id/eprint/35308

Citation Data

Cited 43 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item