Goerendt, I. K., Messa, C., Lawrence, Andrew David ![]() |
Abstract
Parkinson’s disease is associated with slowness, especially of sequential movements, and is characterized pathologically by degeneration of dopaminergic neurons, particularly targeting nigrostriatal projections. In turn, nigrostriatal dopamine has been suggested to be critical for the execution of sequential movements. The objective of this study was to investigate in vivo, with [11C]raclopride, PET changes in regional brain levels of dopamine in healthy volunteers and Parkinson’s disease patients during the execution of paced, stereotyped sequential finger movements. Striatal [11C]raclopride binding reflects dopamine D2 receptor availability and is influenced by synaptic levels of endogenous dopamine. During execution of a pre‐learned sequence of finger movements, a significant reduction in binding potential (BP) of [11C]raclopride was seen in both caudate and putamen in healthy volunteers compared with a resting baseline, consistent with release of endogenous dopamine. Parkinson’s disease patients also showed attenuated [11C]raclopride BP reductions during the same motor paradigm in striatal areas less affected by the disease process. These findings confirm that striatal dopamine release is a component of movement sequencing and show that dopamine release can be detected in early Parkinson’s disease during a behavioural manipulation.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Psychology Neuroscience and Mental Health Research Institute (NMHRI) |
Subjects: | B Philosophy. Psychology. Religion > BF Psychology R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry |
Uncontrolled Keywords: | Parkinson’s disease; dopamine; [11C]raclopride PET; sequential movement |
Publisher: | Oxford University Press |
ISSN: | 0006-8950 |
Last Modified: | 21 Oct 2022 09:10 |
URI: | https://orca.cardiff.ac.uk/id/eprint/35483 |
Citation Data
Cited 92 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |