Damour, Thibault and Sathyaprakash, Bangalore Suryanarayana ![]() |
Abstract
The order of the post-Newtonian expansion needed to extract in a reliable and accurate manner the fully general relativistic gravitational wave signal from inspiraling compact binaries is explored. A class of approximate wave forms, called P-approximants, is constructed based on the following two inputs: (a) the introduction of two new energy-type and flux-type functions e(v) and f(v), respectively, (b) the systematic use of the Padé approximation for constructing successive approximants of e(v) and f(v). The new P-approximants are not only more effectual (larger overlaps) and more faithful (smaller biases) than the standard Taylor approximants, but also converge faster and monotonically. The presently available (v/c)5-accurate post-Newtonian results can be used to construct P-approximate wave forms that provide overlaps with the exact wave form larger than 96.5%, implying that more than 90% of potential events can be detected with the aid of P-approximants as opposed to a mere 10–15 % that would be detectable using standard post-Newtonian approximants.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Physics and Astronomy |
Subjects: | Q Science > QB Astronomy |
Publisher: | American Physical Society |
ISSN: | 0556-2821 |
Last Modified: | 24 Oct 2022 10:49 |
URI: | https://orca.cardiff.ac.uk/id/eprint/45976 |
Citation Data
Cited 283 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |