Xie, Zhihua ORCID: https://orcid.org/0000-0002-5180-8427, Lin, Binliang ORCID: https://orcid.org/0000-0001-8622-5822 and Falconer, Roger Alexander ORCID: https://orcid.org/0000-0001-5960-2864 2014. Turbulence characteristics in free-surface flow over two-dimensional dunes. Journal of Hydro-Environment Research 8 (3) , pp. 200-209. 10.1016/j.jher.2014.01.002 |
Abstract
The turbulent structure of open-channel flows over two-dimensional dunes is investigated numerically using large-eddy simulation (LES), in order to improve our understanding of the interaction between the dune-generated turbulence and the free surface dynamics. The filtered Navier–Stokes equations in the LES model have been discretised using the finite volume method, with a dynamic sub-grid model being employed for the unresolved scales of turbulence. The partial cell treatment has been implemented in a Cartesian grid form to deal with the dune topography. Both the volume of fluid method and rigid lid approach have been employed in the numerical framework to investigate the effects of the free surface treatment on the flow characteristics. The numerical model predicted mean flow velocities, turbulence intensities and Reynolds stresses have been compared with experimental measurements published in the literature, with a detailed analysis being undertaken to assess the accuracy of the model results and the effects of the free surface treatment on the velocity and turbulence predictions. The instantaneous flow structure has been investigated, with emphasis being focused on the free surface dynamics and coherent structures.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Advanced Research Computing @ Cardiff (ARCCA) Engineering |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Uncontrolled Keywords: | Open-channel flow; Free surface; Large-eddy simulation; VOF method; Turbulence modelling; Dunes |
Publisher: | Elsevier |
ISSN: | 1570-6443 |
Funders: | EPSRC |
Last Modified: | 12 Dec 2022 08:30 |
URI: | https://orca.cardiff.ac.uk/id/eprint/56799 |
Citation Data
Cited 20 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |