Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Stem cell transplantation for Huntington's disease

Dunnett, Stephen Bruce ORCID: https://orcid.org/0000-0003-1826-1578 and Rosser, Anne Elizabeth ORCID: https://orcid.org/0000-0002-4716-4753 2007. Stem cell transplantation for Huntington's disease. Experimental Neurology 203 (2) , pp. 279-292. 10.1016/j.expneurol.2006.11.007

Full text not available from this repository.

Abstract

By way of commentary on a recent report that transplanted adult neural progenitor cells can alleviate functional deficits in a rat lesion model of Huntington's disease [Vazey, E.M., Chen, K., Hughes, S.M., Connor, B., 2006. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease. Exp. Neurol. 199, 384–396], we review the current status of the field exploring the use of stem cells, progenitor cells and immortalised cell lines to repair the lesioned striatum in animal models of the human disease. A remarkably rich range of alternative cell types have been used in various animal models, several of which exhibit cell survival and incorporation in the host brain, leading to subsequent functional recovery. In comparing the alternatives with the ‘gold standard’ currently offered by primary tissue grafts, key issues turn out to be: cell survival, differentiation prior to and following implantation into striatal-like phenotypes, integration and connectivity with the host brain, the nature of the electrophysiological, motor and cognitive tests used to assess functional repair, and the mechanisms by which the grafts exert their function. Although none of the alternatives yet has the capacity to match primary fetal tissues for functional repair, that standard is itself limited, and the long term goal must be not just to match but to surpass present capabilities in order to achieve fully functional reconstruction reliably, flexibly, and on demand.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Biosciences
Medicine
MRC Centre for Neuropsychiatric Genetics and Genomics (CNGG)
Neuroscience and Mental Health Research Institute (NMHRI)
Publisher: Elsevier
ISSN: 0014-4886
Last Modified: 27 Oct 2022 08:27
URI: https://orca.cardiff.ac.uk/id/eprint/62393

Citation Data

Cited 61 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item