Roldan, A., Santos Carballal, David ![]() ![]() |
Abstract
Greigite (Fe3S4) and its analogue oxide, magnetite (Fe3O4), are natural minerals with an inverse spinel structure whose atomic-level properties may be difficult to investigate experimentally. Here, [D. Rickard and G. W. Luther, Chem. Rev.107, 514 (Year: 2007)10.1021/cr0503658] we have calculated the elastic constants and other macroscopic mechanical properties by applying elastic strains on the unit cells. We also have carried out a systematic study of the electronic properties of Fe3S4 and Fe3O4, where we have used an ab initio method based on spin-polarized density functional theory with the on-site Coulomb repulsion approximation (Ueff is 1.0 and 3.8 eV for Fe3S4 and Fe3O4, respectively). Comparison of the properties of Fe3S4 and Fe3O4 shows that the sulfide is more covalent than the oxide, which explains the low magnetization of saturation of greigite cited in several experimental reports.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Chemistry |
Subjects: | Q Science > QD Chemistry |
Publisher: | American Institute of Physics |
ISSN: | 0021-9606 |
Last Modified: | 28 Oct 2022 08:50 |
URI: | https://orca.cardiff.ac.uk/id/eprint/72364 |
Citation Data
Cited 77 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |