Liu, Fang, Beames, Joseph M. ![]() |
Abstract
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the troposphere, proceeds through energized Criegee intermediates that undergo unimolecular decay to produce OH radicals. Here, we used infrared (IR) activation of cold CH3CHOO Criegee intermediates to drive hydrogen transfer from the methyl group to the terminal oxygen, followed by dissociation to OH radicals. State-selective excitation of CH3CHOO in the CH stretch overtone region combined with sensitive OH detection revealed the IR spectrum of CH3CHOO, effective barrier height for the critical hydrogen transfer step, and rapid decay dynamics to OH products. Complementary theory provides insights on the IR overtone spectrum, as well as vibrational excitations, structural changes, and energy required to move from the minimum-energy configuration of CH3CHOO to the transition state for the hydrogen transfer reaction.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Chemistry |
Subjects: | Q Science > QD Chemistry |
Publisher: | American Association for the Advancement of Science |
ISSN: | 0036-8075 |
Date of Acceptance: | 20 August 2014 |
Last Modified: | 10 Dec 2022 02:22 |
URI: | https://orca.cardiff.ac.uk/id/eprint/72851 |
Citation Data
Cited 104 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |