Vandeventer, Jason
2015.
4D (3D Dynamic) statistical models of conversational expressions and the synthesis of highly-realistic 4D facial expression sequences.
PhD Thesis,
Cardiff University.
Item availability restricted. |
Preview |
PDF
- Accepted Post-Print Version
Download (16MB) | Preview |
PDF
- Supplemental Material
Restricted to Repository staff only Download (134kB) |
Abstract
In this thesis, a novel approach for modelling 4D (3D Dynamic) conversational interactions and synthesising highly-realistic expression sequences is described. To achieve these goals, a fully-automatic, fast, and robust pre-processing pipeline was developed, along with an approach for tracking and inter-subject registering 3D sequences (4D data). A method for modelling and representing sequences as single entities is also introduced. These sequences can be manipulated and used for synthesising new expression sequences. Classification experiments and perceptual studies were performed to validate the methods and models developed in this work. To achieve the goals described above, a 4D database of natural, synced, dyadic conversations was captured. This database is the first of its kind in the world. Another contribution of this thesis is the development of a novel method for modelling conversational interactions. Our approach takes into account the time-sequential nature of the interactions, and encompasses the characteristics of each expression in an interaction, as well as information about the interaction itself. Classification experiments were performed to evaluate the quality of our tracking, inter-subject registration, and modelling methods. To evaluate our ability to model, manipulate, and synthesise new expression sequences, we conducted perceptual experiments. For these perceptual studies, we manipulated modelled sequences by modifying their amplitudes, and had human observers evaluate the level of expression realism and image quality. To evaluate our coupled modelling approach for conversational facial expression interactions, we performed a classification experiment that differentiated predicted frontchannel and backchannel sequences, using the original sequences in the training set. We also used the predicted backchannel sequences in a perceptual study in which human observers rated the level of similarity of the predicted and original sequences. The results of these experiments help support our methods and our claim of our ability to produce 4D, highly-realistic expression sequences that compete with state-of-the-art methods.
Item Type: | Thesis (PhD) |
---|---|
Date Type: | Completion |
Status: | Unpublished |
Schools: | Computer Science & Informatics |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Date of First Compliant Deposit: | 30 March 2016 |
Last Modified: | 13 Sep 2023 09:44 |
URI: | https://orca.cardiff.ac.uk/id/eprint/82405 |
Actions (repository staff only)
Edit Item |