Zhang, Gaofeng, Edmundson, Mathew, Telezhkin, Vsevolod ORCID: https://orcid.org/0000-0002-5054-8774, Gu, Yu, Wei, Xiaoqing ORCID: https://orcid.org/0000-0002-6274-8503, Kemp, Paul J. ORCID: https://orcid.org/0000-0003-2773-973X and Song, Bing ORCID: https://orcid.org/0000-0001-9356-2333 2016. The role of Kv1.2 channel in electrotaxis cell migration. Journal of Cellular Physiology 231 (6) , pp. 1375-1384. 10.1002/jcp.25259 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
Voltage-gated potassium Kv1.2 channels play pivotal role in maintaining of resting membrane potential and, consequently, regulation of cellular excitability of neurons. Endogenously generated electric field (EF) have been proven as an important regulator for cell migration and tissue repair. The mechanisms of ion channel involvement in EF-induced cell responses are extensively studied but largely are poorly understood. In this study we generated three COS-7 clones with different expression levels of Kv1.2 channel, and confirmed their functional variations with patch clamp analysis. Time-lapse imaging analysis showed that EF-induced cell migration response was Kv1.2 channel expression level depended. Inhibition of Kv1.2 channels with charybdotoxin (ChTX) constrained the sensitivity of COS-7 cells to EF stimulation more than their motility. Immunocytochemistry and pull-down analyses demonstrated association of Kv1.2 channels with actin-binding protein cortactin and its re-localization to the cathode-facing membrane at EF stimulation, which confirms the mechanism of EF-induced directional migration. This study displays that Kv1.2 channels represent an important physiological link in EF-induced cell migration. The described mechanism suggests a potential application of EF which may improve therapeutic performance in curing injuries of neuronal and/or cardiac tissue repair, post operational therapy, and various degenerative syndromes.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Dentistry Biosciences |
Subjects: | R Medicine > RK Dentistry |
Additional Information: | This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Publisher: | Wiley |
ISSN: | 0021-9541 |
Funders: | ERC; Wellcome Trust; British Council |
Date of First Compliant Deposit: | 30 March 2016 |
Date of Acceptance: | 17 November 2015 |
Last Modified: | 31 May 2023 20:08 |
URI: | https://orca.cardiff.ac.uk/id/eprint/83958 |
Citation Data
Cited 6 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |