Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

CO adsorption over Pd nanoparticles: A general framework for IR simulations on nanoparticles

Zeinalipour-Yazdil, C. D., Willock, David James ORCID: https://orcid.org/0000-0002-8893-1090, Thomas, Liam, Wilson, K. and Lee, A. F. 2016. CO adsorption over Pd nanoparticles: A general framework for IR simulations on nanoparticles. Surface Science 646 , pp. 210-220. 10.1016/j.susc.2015.07.014

Full text not available from this repository.

Abstract

CO vibrational spectra over catalytic nanoparticles under high coverages/pressures are discussed from a DFT perspective. Hybrid B3LYP and PBE DFT calculations of CO chemisorbed over Pd4 and Pd13 nanoclusters, and a 1.1 nm Pd38 nanoparticle, have been performed in order to simulate the corresponding coverage dependent infrared (IR) absorption spectra, and hence provide a quantitative foundation for the interpretation of experimental IR spectra of CO over Pd nanocatalysts. B3LYP simulated IR intensities are used to quantify site occupation numbers through comparison with experimental DRIFTS spectra, allowing an atomistic model of CO surface coverage to be created. DFT adsorption energetics for low CO coverage (θ → 0) suggest the CO binding strength follows the order hollow > bridge > linear, even for dispersion-corrected functionals for sub-nanometre Pd nanoclusters. For a Pd38 nanoparticle, hollow and bridge-bound are energetically similar (hollow ≈ bridge > atop). It is well known that this ordering has not been found at the high coverages used experimentally, wherein atop CO has a much higher population than observed over Pd(111), confirmed by our DRIFTS spectra for Pd nanoparticles supported on a KIT-6 silica, and hence site populations were calculated through a comparison of DFT and spectroscopic data. At high CO coverage (θ = 1), all three adsorbed CO species co-exist on Pd38, and their interdiffusion is thermally feasible at STP. Under such high surface coverages, DFT predicts that bridge-bound CO chains are thermodynamically stable and isoenergetic to an entirely hollow bound Pd/CO system. The Pd38 nanoparticle undergoes a linear (3.5%), isotropic expansion with increasing CO coverage, accompanied by 63 and 30 cm− 1 blue-shifts of hollow and linear bound CO respectively.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Advanced Research Computing @ Cardiff (ARCCA)
Chemistry
Subjects: Q Science > QD Chemistry
Publisher: Elsevier
ISSN: 0039-6028
Last Modified: 04 Jan 2023 02:18
URI: https://orca.cardiff.ac.uk/id/eprint/87223

Citation Data

Cited 51 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item