| Hull, Claire M, Loveridge, Edric Joel, Rolley, Nicola J, Donnison, Iain S, Kelly, Steven L and Kelly, Diane E 2014. Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock. Biotechnology for Biofuels 7 (1) , 133. 10.1186/s13068-014-0133-7 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (779kB) | Preview |
Abstract
Background: Genetically customised Saccharomyces cerevisiae that can produce ethanol and additional bio-based chemicals from sustainable agro-industrial feedstocks (for example, residual plant biomass) are of major interest to the biofuel industry. We investigated the microbial biorefinery concept of ethanol and squalene co-production using S. cerevisiae (strain YUG37- ERG1 ) wherein ERG1 (squalene epoxidase) transcription is under the control of a doxycycline-repressible tet0 7 -CYC1 promoter. The production of ethanol and squalene by YUG37- ERG1 grown using agriculturally sourced grass juice supplemented with doxycycline was assessed. Results: Use of the tet0 7 -CYC1 promoter permitted regulation of ERG1 expression and squalene accumulation in YUG37- ERG1, allowing us to circumvent the lethal growth phenotype seen when ERG1 is disrupted completely. In experiments using grass juice feedstock supplemented with 0 to 50 μ g doxycycline mL − 1 , YUG37- ERG1 fermented ethanol (22.5 [±0.5] mg mL − 1 ) and accumulated the highest squalene content (7.89 ± 0.25 mg g − 1 dry biomass) and yield (18.0 ± 4.18 mg squalene L − 1 ) with supplements of 5.0 and 0.025 μ g doxycycline mL − 1 , respectively. Grass juice was found to be rich in water-soluble carbohydrates (61.1 [±3.6] mg sugars mL − 1 ) and provided excellent feedstock for growth and fermentation studies using YUG37- ERG1 . Conclusion: Residual plant biomass components from crop production and rotation systems represent possible substrates for microbial fermentation of biofuels and bio-based compounds. This study is the first to utilise S. cerevisiae for the co-production of ethanol and squalene from grass juice. Our findings underscore the value of the biorefinery approach and demonstrate the potential to integrate microbial bioprocess engineering with existing agriculture.
| Item Type: | Article |
|---|---|
| Date Type: | Publication |
| Status: | Published |
| Schools: | Schools > Chemistry |
| Subjects: | Q Science > QD Chemistry |
| Additional Information: | This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| Publisher: | BioMed Central |
| ISSN: | 1754-6834 |
| Date of First Compliant Deposit: | 30 March 2016 |
| Last Modified: | 23 May 2023 14:34 |
| URI: | https://orca.cardiff.ac.uk/id/eprint/87772 |
Citation Data
Cited 24 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |




Altmetric
Altmetric