Hartley, Jon, Porch, Adrian ORCID: https://orcid.org/0000-0001-5293-8883 and Jones, Martin 2015. A non-invasive microwave method for assessing solid-state ammonia storage. Sensors and Actuators B: Chemical 210 , pp. 726-730. 10.1016/j.snb.2014.12.088 |
Abstract
A 2.45 GHz microwave cavity resonator is used to measure the change in dielectric properties of alkali halide salts (such as CaI2) when exposed to ammonia gas. This technique is based on the change in electric dipole moment of the material that occurs as a function of ammonia content, and so can be used to determine ammonia concentration in solids in a non-invasive way. When a powdered sample is placed in the electric field of the TM010 mode of a resonant cylindrical cavity, we find that ammonia absorption gives a first order change in material polarisation (i.e. real permittivity), related to the ammonia sequestered within the solid. The associated dielectric losses (i.e. imaginary permittivity) exhibit second order transitions, which we believe are due to order–disorder transitions between the different coordination complexes of the halide salt.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Engineering |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Uncontrolled Keywords: | Microwave characterisation; Ammonia storage; Alkali halide materials |
Publisher: | Elsevier |
ISSN: | 0925-4005 |
Date of Acceptance: | 20 December 2014 |
Last Modified: | 01 Nov 2022 10:13 |
URI: | https://orca.cardiff.ac.uk/id/eprint/90723 |
Citation Data
Cited 10 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |