Cimarelli, Andrea and De Angelis, Elisabetta ORCID: https://orcid.org/0000-0002-9183-2413 The physics of energy transfer toward improved subgrid-scale models. Physics of Fluids 26 , 055103. 10.1063/1.4871902 |
Abstract
Starting from physical insight on the energy transfer phenomena in wall turbulent flows, it is shown how modeling of subgrid stresses in large-eddy simulations can be improved. Each model should aim at reproducing the double feature of energy sink and source of the small scales of wall flows which become relevant when large filter lengths are considered. Here we propose one possible choice where the main ingredient is the coupling of the classical linear formulation of eddy viscosity with the nonlinear anisotropic features of the velocity increments tensor. This approach, which actually presents most of the features of the mixed models, captures the near-wall dynamics for very large filter lengths reproducing the small scales source physics responsible for backward energy transfer. A posteriori tests show excellent agreement with direct numerical simulation of turbulent channel flows even when very coarse grids are considered. The capability of the balance of the filtered second order structure function as a post-processing tool to evaluate the physics of any model is also shown.
Item Type: | Article |
---|---|
Status: | Published |
Schools: | Engineering |
Subjects: | Q Science > QC Physics T Technology > TJ Mechanical engineering and machinery |
Publisher: | American Institute of Physics |
ISSN: | 1070-6631 |
Date of Acceptance: | 8 April 2014 |
Last Modified: | 01 Nov 2022 10:13 |
URI: | https://orca.cardiff.ac.uk/id/eprint/90748 |
Citation Data
Cited 34 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |