Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Sustainability assessment of electrokinetic bioremediation compared with alternative remediation options for a petroleum release site

Gill, R. T., Thornton, S. F., Harbottle, Michael John ORCID: https://orcid.org/0000-0002-6443-5340 and Smith, J. W. N. 2016. Sustainability assessment of electrokinetic bioremediation compared with alternative remediation options for a petroleum release site. Journal of Environmental Management 184 (1) , pp. 120-131. 10.1016/j.jenvman.2016.07.036

[thumbnail of Sustainability-main.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Sustainable management practices can be applied to the remediation of contaminated land to maximise the economic, environmental and social benefits of the process. The Sustainable Remediation Forum UK (SuRF-UK) have developed a framework to support the implementation of sustainable practices within contaminated land management and decision making. This study applies the framework, including qualitative (Tier 1) and semi-quantitative (Tier 2) sustainability assessments, to a complex site where the principal contaminant source is unleaded gasoline, giving rise to a dissolved phase BTEX and MTBE plume. The pathway is groundwater migration through a chalk aquifer and the receptor is a water supply borehole. A hydraulic containment system (HCS) has been installed to manage the MTBE plume migration. The options considered to remediate the MTBE source include monitored natural attenuation (MNA), air sparging/soil vapour extraction (AS/SVE), pump and treat (PT) and electrokinetic-enhanced bioremediation (EK-BIO). A sustainability indictor set from the SuRF-UK framework, including priority indicator categories selected during a stakeholder engagement workshop, was used to frame the assessments. At Tier 1 the options are ranked based on qualitative supporting information, whereas in Tier 2 a multi-criteria analysis is applied. Furthermore, the multi-criteria analysis was refined for scenarios where photovoltaics (PVs) are included and amendments are excluded from the EK-BIO option. Overall, the analysis identified AS/SVE and EK-BIO as more sustainable remediation options at this site than either PT or MNA. The wider implications of this study include: (1) an appraisal of the management decision from each Tier of the assessment with the aim to highlight areas for time and cost savings for similar assessments in the future; (2) the observation that EK-BIO performed well against key indicator categories compared to the other intensive treatments; and (3) introducing methods to improve the sustainability of the EK-BIO treatment design (such as PVs) did not have a significant effect in this instance.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Uncontrolled Keywords: Sustainable remediation; Electrokinetic bioremediation; Green remediation; MTBE
Publisher: Elsevier
ISSN: 0301-4797
Funders: EPSRC, Shell Global Solutions
Date of First Compliant Deposit: 12 August 2016
Date of Acceptance: 12 July 2016
Last Modified: 17 Nov 2024 04:00
URI: https://orca.cardiff.ac.uk/id/eprint/93822

Citation Data

Cited 26 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics