Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Combining cellular automata and local binary patterns for copy-move forgery detection

Tralic, Dijana, Grgic, Sonja, Sun, Xianfang ORCID: https://orcid.org/0000-0002-6114-0766 and Rosin, Paul L. ORCID: https://orcid.org/0000-0002-4965-3884 2016. Combining cellular automata and local binary patterns for copy-move forgery detection. Multimedia Tools and Applications 75 (24) , pp. 16881-16903. 10.1007/s11042-015-2961-2

[thumbnail of dijana_mtap_FINAL.pdf]
Preview
PDF - Accepted Post-Print Version
Download (604kB) | Preview

Abstract

Detection of duplicated regions in digital images has been a highly investigated field in recent years since the editing of digital images has been notably simplified by the development of advanced image processing tools. In this paper, we present a new method that combines Cellular Automata (CA) and Local Binary Patterns (LBP) to extract feature vectors for the purpose of detection of duplicated regions. The combination of CA and LBP allows a simple and reduced description of texture in the form of CA rules that represents local changes in pixel luminance values. The importance of CA lies in the fact that a very simple set of rules can be used to describe complex textures, while LBP, applied locally, allows efficient binary representation. CA rules are formed on a circular neighborhood, resulting in insensitivity to rotation of duplicated regions. Additionally, a new search method is applied to select the nearest neighbors and determine duplicated blocks. In comparison with similar methods, the proposed method showed good performance in the case of plain/multiple copy-move forgeries and rotation/scaling of duplicated regions, as well as robustness to post-processing methods such as blurring, addition of noise and JPEG compression. An important advantage of the proposed method is its low computational complexity and simplicity of its feature vector representation.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Computer Science & Informatics
Uncontrolled Keywords: Copy-move forgery; Duplicated regions; Cellular automata; Local binary pattern
Publisher: Springer
ISSN: 1380-7501
Date of First Compliant Deposit: 8 September 2016
Date of Acceptance: 18 September 2015
Last Modified: 01 Dec 2024 21:15
URI: https://orca.cardiff.ac.uk/id/eprint/94356

Citation Data

Cited 20 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics