Morini, Lorenzo ORCID: https://orcid.org/0000-0001-7155-5036, Piccolroaz, A., Mishuris, G. and Radi, E. 2013. Integral identities for a semi-infinite interfacial crack in anisotropic elastic bimaterials. International Journal of Solids and Structures 50 (9) , pp. 1437-1448. 10.1016/j.ijsolstr.2013.01.021 |
Abstract
The focus of the article is on the analysis of a semi-infinite crack at the interface between two dissimilar anisotropic elastic materials, loaded by a general asymmetrical system of forces acting on the crack faces. Recently derived symmetric and skew-symmetric weight function matrices are introduced for both plane strain and antiplane shear cracks, and used together with the fundamental reciprocal identity (Betti formula) in order to formulate the elastic fracture problem in terms of singular integral equations relating the applied loading and the resulting crack opening. The proposed compact formulation can be used to solve many problems in linear elastic fracture mechanics (for example various classic crack problems in homogeneous and heterogeneous anisotropic media, as piezoceramics or composite materials). This formulation is also fundamental in many multifield theories, where the elastic problem is coupled with other concurrent physical phenomena.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Engineering |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Uncontrolled Keywords: | Interfacial crack; Stroh formalism; Weight functions; Betty Identity; Singular integral |
Publisher: | Elsevier |
ISSN: | 0020-7683 |
Last Modified: | 21 Oct 2022 06:54 |
URI: | https://orca.cardiff.ac.uk/id/eprint/98728 |
Citation Data
Cited 15 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |