Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Browse by Current Cardiff authors

Number of items: 19.

Pryce, John ORCID: https://orcid.org/0000-0003-1702-7624 and Nedialkov, Nedialko S. 2020. Multibody dynamics in natural coordinates through automatic differentiation and high-index DAE solving. Acta Cybernetica 24 (3) 10.14232/ACTACYB.24.3.2020.4
file

Pryce, John ORCID: https://orcid.org/0000-0003-1702-7624, Nedialkov, Nedialko S., Tan, Guangning and Li, Xiao 2018. How AD can help solve differential-algebraic equations. Optimization Methods and Software 10.1080/10556788.2018.1428605
file

Tan, Guangning, Nedialkov, Nedialko S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2017. Conversion methods for improving structural analysis of differential-algebraic equation systems. BIT Numerical Mathematics 57 , pp. 845-865. 10.1007/s10543-017-0655-z
file

McKenzie, Ross and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2017. Structural analysis based dummy derivative selection for differential algebraic equations. BIT Numerical Mathematics 57 (2) , pp. 433-462. 10.1007/s10543-016-0642-9
file

Coffey, Mark W., Hindmarsh, James L., Lettington, Matthew C. ORCID: https://orcid.org/0000-0001-9327-143X and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2017. On higher-dimensional Fibonacci numbers, Chebyshev polynomials and sequences of vector convergents. Journal de Theorie des Nombres de Bordeaux 29 (2) , pp. 369-423. 10.5802/jtnb.985
file

McKenzie, Ross and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2016. Solving differential-algebraic equations by selecting universal dummy derivatives. Belair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R. and Spiteri, R., eds. Mathematical and Computational Approaches in Advancing Modern Science and Engineering, Springer, pp. 665-676. (10.1007/978-3-319-30379-6_60)

Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2016. The forthcoming IEEE Standard 1788 for interval arithmetic. Presented at: 16th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numbers, Würzburg, Germany,, 21-26 September 2014. Published in: Nehmeier, M., Wolff von Gudenberg, J. and Tucker, W. eds. Scientific Computing, Computer Arithmetic, and Validated Numerics. SCAN 2015. Lecture Notes in Computer Science. Lecture Notes in Computer Science , vol.9553 Springer, pp. 23-39. 10.1007/978-3-319-31769-4_3

Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 and McKenzie, Ross 2016. A new look at dummy derivatives for differential-algebraic equations. Belair, J., Frigaard, I. A., Kunze, H., Makarov, R., Melnik, R. and Spiteri, R. J., eds. Mathematical and Computational Approaches in Advancing Modern Science and Engineering, Springer International Publishing, pp. 713-723. (10.1007/978-3-319-30379-6_64)

Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624, Nedialkov, Nedialko S. and Tan, Guangning 2015. DAESA—A Matlab tool for structural analysis of differential-algebraic equations: theory. ACM Transactions on Mathematical Software 41 (2) , 9. 10.1145/2689664
file

Nedialkov, Nedialko S., Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 and Tan, Guangning 2015. Algorithm 948: DAESA — a Matlab tool for structural analysis of differential-algebraic equations: Software. ACM Transactions on Mathematical Software 41 (2) , 12. 10.1145/2700586

Rauh, A., Dittrich, C., Aschemann, H., Nedialkov, N. S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2013. A differential-algebraic approach for robust control design and disturbance compensation of finite-dimensional models of heat transfer processes. Presented at: 2013 IEEE International Conference on Mechatronics (ICM), 27 Feb -1 Mar 2013. Mechatronics (ICM), 2013 IEEE International Conference on. IEEE, pp. 40-45. 10.1109/ICMECH.2013.6518508

Rauh, Andreas, Aschemann, Harald, Nedialkov, Nedialko S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2013. Uses of differential-algebraic equations for trajectory planning and feedforward control of spatially two-dimensional heat transfer processes. Presented at: 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR), 26-29 August 2013. Methods and Models in Automation and Robotics (MMAR), 2013 18th International Conference on. IEEE, pp. 155-160. 10.1109/MMAR.2013.6669898

Rauh, Andreas, Senkel, Luise, Aschemann, Harald, Nedialkov, Nedialko S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2012. Sensitivity analysis for systems of differential-algebraic equations with applications to predictive control and parameter estimation. Presented at: 2012 IEEE International Conference on Control Applications, 3-5 October 2012. Control Applications (CCA), 2012 IEEE International Conference on. IEEE, pp. 1640-1645. 10.1109/CCA.2012.6402467

Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2011. Basic methods of linear functional analysis. London, UK: Dover Publications.

Nedialkov, Nedialko S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2008. Solving differential algebraic equations by Taylor Series(III): the DAETS Code. Journal of Numerical Analysis, Industrial and Applied Mathematics 3 (1-2) , pp. 61-80.

Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 and Tadjouddine, Emmanuel M. 2008. Fast automatic differentiation Jacobians by compact LU factorization. SIAM Journal on Scientific Computing 30 (4) , pp. 1659-1677. 10.1137/050644847
file

Nedialkov, N. S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2007. Solving differential-algebraic equations by Taylor series (II): Computing the System Jacobian. BIT Numerical Mathematics 47 (1) , pp. 121-135. 10.1007/s10543-006-0106-8

Nedialkov, N. S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 2005. Solving differential-algebraic equations by Taylor series (I): Computing Taylor coefficients. BIT Numerical Mathematics 45 (3) , pp. 561-591. 10.1007/s10543-005-0019-y

Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 1993. Numerical solution of Sturm-Liouville problems. Oxford, UK: Oxford University Press.

This list was generated on Sat Nov 23 08:26:22 2024 GMT.