Nedialkov, Nedialko S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2025.
Sub-ODEs simplify Taylor series algorithms for ordinary differential equations.
SIAM Journal on Scientific Computing
47
(5)
, A2746-A2773.
10.1137/24m1716161
|
|
Pryce, John ORCID: https://orcid.org/0000-0003-1702-7624 and Nedialkov, Nedialko S.
2020.
Multibody dynamics in natural coordinates through automatic differentiation and high-index DAE solving.
Acta Cybernetica
24
(3)
10.14232/ACTACYB.24.3.2020.4
|
|
|
Pryce, John ORCID: https://orcid.org/0000-0003-1702-7624, Nedialkov, Nedialko S., Tan, Guangning and Li, Xiao
2018.
How AD can help solve differential-algebraic equations.
Optimization Methods and Software
10.1080/10556788.2018.1428605
|
|
|
Tan, Guangning, Nedialkov, Nedialko S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2017.
Conversion methods for improving structural analysis of differential-algebraic equation systems.
BIT Numerical Mathematics
57
, pp. 845-865.
10.1007/s10543-017-0655-z
|
|
|
McKenzie, Ross and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2017.
Structural analysis based dummy derivative selection for differential algebraic equations.
BIT Numerical Mathematics
57
(2)
, pp. 433-462.
10.1007/s10543-016-0642-9
|
|
|
Coffey, Mark W., Hindmarsh, James L., Lettington, Matthew C. ORCID: https://orcid.org/0000-0001-9327-143X and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2017.
On higher-dimensional Fibonacci numbers, Chebyshev polynomials and sequences of vector convergents.
Journal de Theorie des Nombres de Bordeaux
29
(2)
, pp. 369-423.
10.5802/jtnb.985
|
|
|
McKenzie, Ross and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2016.
Solving differential-algebraic equations by selecting universal dummy derivatives.
Belair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R. and Spiteri, R., eds.
Mathematical and Computational Approaches in Advancing Modern Science and Engineering,
Springer,
pp. 665-676.
(10.1007/978-3-319-30379-6_60)
|
|
Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 and McKenzie, Ross
2016.
A new look at dummy derivatives for differential-algebraic equations.
Belair, J., Frigaard, I. A., Kunze, H., Makarov, R., Melnik, R. and Spiteri, R. J., eds.
Mathematical and Computational Approaches in Advancing Modern Science and Engineering,
Springer International Publishing,
pp. 713-723.
(10.1007/978-3-319-30379-6_64)
|
|
Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2016.
The forthcoming IEEE Standard 1788 for interval arithmetic.
Presented at: 16th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numbers,
Würzburg, Germany,,
21-26 September 2014.
Published in: Nehmeier, M., Wolff von Gudenberg, J. and Tucker, W. eds.
Scientific Computing, Computer Arithmetic, and Validated Numerics. SCAN 2015.
Lecture Notes in Computer Science.
Lecture Notes in Computer Science
, vol.9553
Springer,
pp. 23-39.
10.1007/978-3-319-31769-4_3
|
|
Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624, Nedialkov, Nedialko S. and Tan, Guangning
2015.
DAESA—A Matlab tool for structural analysis of differential-algebraic equations: theory.
ACM Transactions on Mathematical Software
41
(2)
, 9.
10.1145/2689664
|
|
|
Nedialkov, Nedialko S., Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 and Tan, Guangning
2015.
Algorithm 948: DAESA — a Matlab tool for structural analysis of differential-algebraic equations: Software.
ACM Transactions on Mathematical Software
41
(2)
, 12.
10.1145/2700586
|
|
Rauh, A., Dittrich, C., Aschemann, H., Nedialkov, N. S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2013.
A differential-algebraic approach for robust control design and disturbance compensation of finite-dimensional models of heat transfer processes.
Presented at: 2013 IEEE International Conference on Mechatronics (ICM),
27 Feb -1 Mar 2013.
Mechatronics (ICM), 2013 IEEE International Conference on.
IEEE,
pp. 40-45.
10.1109/ICMECH.2013.6518508
|
|
Rauh, Andreas, Aschemann, Harald, Nedialkov, Nedialko S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2013.
Uses of differential-algebraic equations for trajectory planning and feedforward control of spatially two-dimensional heat transfer processes.
Presented at: 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR),
26-29 August 2013.
Methods and Models in Automation and Robotics (MMAR), 2013 18th International Conference on.
IEEE,
pp. 155-160.
10.1109/MMAR.2013.6669898
|
|
Rauh, Andreas, Senkel, Luise, Aschemann, Harald, Nedialkov, Nedialko S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2012.
Sensitivity analysis for systems of differential-algebraic equations with applications to predictive control and parameter estimation.
Presented at: 2012 IEEE International Conference on Control Applications,
3-5 October 2012.
Control Applications (CCA), 2012 IEEE International Conference on.
IEEE,
pp. 1640-1645.
10.1109/CCA.2012.6402467
|
|
Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2011.
Basic methods of linear functional analysis.
London, UK:
Dover Publications.
|
|
Nedialkov, Nedialko S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2008.
Solving differential algebraic equations by Taylor Series(III): the DAETS Code.
Journal of Numerical Analysis, Industrial and Applied Mathematics
3
(1-2)
, pp. 61-80.
|
|
Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624 and Tadjouddine, Emmanuel M.
2008.
Fast automatic differentiation Jacobians by compact LU factorization.
SIAM Journal on Scientific Computing
30
(4)
, pp. 1659-1677.
10.1137/050644847
|
|
|
Nedialkov, N. S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2007.
Solving differential-algebraic equations by Taylor series (II): Computing the System Jacobian.
BIT Numerical Mathematics
47
(1)
, pp. 121-135.
10.1007/s10543-006-0106-8
|
|
Nedialkov, N. S. and Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
2005.
Solving differential-algebraic equations by Taylor series (I): Computing Taylor coefficients.
BIT Numerical Mathematics
45
(3)
, pp. 561-591.
10.1007/s10543-005-0019-y
|
|
Pryce, John D. ORCID: https://orcid.org/0000-0003-1702-7624
1993.
Numerical solution of Sturm-Liouville problems.
Oxford, UK:
Oxford University Press.
|
|



Up a level