Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

In Vitro Topical Delivery of Chlorhexidine to the Cornea: Enhancement Using Drug-Loaded Contact Lenses and β-Cyclodextrin Complexation, and the Importance of Simulating Tear Irrigation

Hewitt, Melissa G., Morrison, Peter W. J. ORCID: https://orcid.org/0000-0002-3712-7908, Boostrom, Hannah M. ORCID: https://orcid.org/0000-0002-7367-3631, Morgan, Siân R., Fallon, Melissa ORCID: https://orcid.org/0000-0002-0267-3829, Lewis, Philip N. ORCID: https://orcid.org/0000-0002-3353-0708, Whitaker, David ORCID: https://orcid.org/0000-0002-8271-7552, Brancale, Andrea ORCID: https://orcid.org/0000-0002-9728-3419, Varricchio, Carmine ORCID: https://orcid.org/0000-0002-1673-4768, Quantock, Andrew J. ORCID: https://orcid.org/0000-0002-2484-3120, Burton, Matthew J. and Heard, Charles M. ORCID: https://orcid.org/0000-0001-9703-9777 2020. In Vitro Topical Delivery of Chlorhexidine to the Cornea: Enhancement Using Drug-Loaded Contact Lenses and β-Cyclodextrin Complexation, and the Importance of Simulating Tear Irrigation. Molecular Pharmaceutics 17 (4) , pp. 1428-1441. 10.1021/acs.molpharmaceut.0c00140

[thumbnail of In+vitro+Topical+Delivery+of+Chlorhexidine+to+the+Cornea-+Enhancement+using+Drug-Loaded+Contact+Lenses+and+_-Cyclodextrin+Complexation,+and+the+Importance+of+Simulating+Tear+Irrigation.pdf] PDF - Accepted Post-Print Version
Download (1MB)

Abstract

Microbial keratitis is a severe, sight-threatening condition caused by various pathogens. Eyedrops are the standard delivery modality for treating these disorders; however, blinking reflex, elevated tear production, and nasolacrimal drainage eliminate much of the instilled dose within a few seconds. Therefore, eyedrops must be applied repeatedly for prolonged periods. The present study aimed to probe more effective ocular delivery of chlorhexidine based upon drug-loaded hydrogel contact lenses and β-cyclodextrin (β-CD), while also determining the effect of constant irrigation with simulated tear fluid (STF) in in vitro experiments. Chlorhexidine digluconate (as 0.2 and 2% solutions, β-CD inclusion complexes, and loaded hydrogel contact lenses) were applied to enucleated porcine eyes as single or multiple 10 μL doses, or as drug-loaded contact lenses, with and without β-CD. The corneas were then excised and drug-extracted quantified by high-performance liquid chromatography (HPLC). The effect of constant irrigation by STF was evaluated to test the effect of increased tear production on corneal delivery. Potential antimicrobial activity of the delivered drug was also assessed. Results showed that drug-loaded contact lenses delivered the greatest amount of chlorhexidine into the cornea over a 24 h period, while the eyedrop solution comparator delivered the least. The β-CD significantly enhanced chlorhexidine delivery to the cornea from eyedrop solution, although contact lenses loaded with chlorhexidine−β-CD failed to enhance delivery. β-CD within the hydrogel matrix impeded drug release. Constant irrigation with STF significantly reduced the amount of drug delivered to the cornea in all cases. Chlorhexidine retained antimicrobial activity in all delivery methods. Hydrogel contact lenses loaded with chlorhexidine delivered significantly higher levels to the cornea compared to eyedrops, either multiple hourly doses or a single dose. They also offer reduced application, in particular, to a nonulcerated corneal infection. Finally, the importance of fully accounting for tear production in in vitro ocular delivery experiments was highlighted.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Optometry and Vision Sciences
Pharmacy
Publisher: American Chemical Society
ISSN: 1543-8384
Date of First Compliant Deposit: 8 April 2020
Date of Acceptance: 3 March 2020
Last Modified: 29 Mar 2024 08:32
URI: https://orca.cardiff.ac.uk/id/eprint/130903

Citation Data

Cited 11 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics