Symons, Frederick
2017.
On uniqueness in some physical systems.
PhD Thesis,
Cardiff University.
![]() Item availability restricted. |
![]() |
PDF
Download (1MB) |
![]() |
PDF
- Supplemental Material
Restricted to Repository staff only Download (722kB) |
Abstract
In this work we present some uniqueness and cloaking results for a related pair of inverse problems. The first concerns recovering the parameter q in a Bessel-type operator pencil, over L^2(0, 1; rdr) from (a generalisation of) the Weyl–-Titchmarsh boundary m-function. We assume that both coefficients, w and q, are singular at 0. We prove q is uniquely determined by the sequence m(-n^2) (n = 1, 2, 3, ...), using asymptotic and spectral analysis and m-function interpolation results. For corollary we find, in a halfdisc with a singular “Dirichlet-point” boundary condition on the straight edge, a singular radial Schroedinger potential is uniquely determined by Dirichlet-to- Neumann boundary measurements on the semi-circular edge. The second result concerns recovery of three things—a Schroedinger potential in a planar domain, a Dirichlet-point boundary condition on part of the boundary, and a self-adjointness-imposing condition—from Dirichlet-to-Neumann measurements on the remaining boundary. With modern approaches to the inverse conductivity problem and a solution-space density argument we show the boundary condition cloaks the potential and vice versa. Appealing to negative eigen-value asymptotics we find the full-frequency problem has full uniqueness.
Item Type: | Thesis (PhD) |
---|---|
Date Type: | Completion |
Status: | Unpublished |
Schools: | Mathematics |
Subjects: | Q Science > QA Mathematics |
Funders: | EPSRC |
Date of First Compliant Deposit: | 18 August 2017 |
Last Modified: | 15 Sep 2021 14:59 |
URI: | https://orca.cardiff.ac.uk/id/eprint/103772 |
Actions (repository staff only)
![]() |
Edit Item |