Damania, Blossom, Fliss, Patricia M., Jowers, Tali Pechenick, Brinkmann, Melanie M., Holstermann, Barbara, Mack, Claudia, Dickinson, Paul, Hohenberg, Heinrich, Ghazal, Peter ORCID: https://orcid.org/0000-0003-0035-2228 and Brune, Wolfram 2012. Viral Mediated Redirection of NEMO/IKK? to Autophagosomes Curtails the Inflammatory Cascade. PLoS Pathogens 8 (2) , e1002517. 10.1371/journal.ppat.1002517 |
Preview |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (4MB) | Preview |
Abstract
The early host response to viral infections involves transient activation of pattern recognition receptors leading to an induction of inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Subsequent activation of cytokine receptors in an autocrine and paracrine manner results in an inflammatory cascade. The precise mechanisms by which viruses avert an inflammatory cascade are incompletely understood. Nuclear factor (NF)-κB is a central regulator of the inflammatory signaling cascade that is controlled by inhibitor of NF-κB (IκB) proteins and the IκB kinase (IKK) complex. In this study we show that murine cytomegalovirus inhibits the inflammatory cascade by blocking Toll-like receptor (TLR) and IL-1 receptor-dependent NF-κB activation. Inhibition occurs through an interaction of the viral M45 protein with the NF-κB essential modulator (NEMO), the regulatory subunit of the IKK complex. M45 induces proteasome-independent degradation of NEMO by targeting NEMO to autophagosomes for subsequent degradation in lysosomes. We propose that the selective and irreversible degradation of a central regulatory protein by autophagy represents a new viral strategy to dampen the inflammatory response.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Medicine |
Publisher: | Public Library of Science |
ISSN: | 1553-7366 |
Date of First Compliant Deposit: | 29 August 2018 |
Last Modified: | 13 May 2023 18:23 |
URI: | https://orca.cardiff.ac.uk/id/eprint/112585 |
Citation Data
Cited 76 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |