Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

A comprehensive UHPLC ion mobility QTOF method for profiling and quantification of eicosanoids, other oxylipins and fatty acids

Hinz, Christine, Liggi, Sonia, Mocciaro, Gabriele, Jung, Stephanie M., Induruwa, Isuru, Pereira, Milton C.D.A., Bryant, Clare E., Meckelmann, Sven W., O'Donnell, Valerie B. ORCID: https://orcid.org/0000-0003-4089-8460, Farndale, Richard W., Fjeldsted, John C. and Griffin, Julian L. 2019. A comprehensive UHPLC ion mobility QTOF method for profiling and quantification of eicosanoids, other oxylipins and fatty acids. Analytical Chemistry 91 (13) , pp. 8025-8035. 10.1021/acs.analchem.8b04615

[thumbnail of A comprehensive UHPLC ion mobility QTOF  VOD Ana Chem.pdf]
Preview
PDF - Accepted Post-Print Version
Download (832kB) | Preview

Abstract

Analysis of oxylipins by liquid chromatography mass spectrometry (LC/MS) is challenging because of the small mass range occupied by this diverse lipid class, the presence of numerous structural isomers, and their low abundance in biological samples. Although highly sensitive LC/MS/MS methods are commonly used, further separation is achievable by using drift tube ion mobility coupled with high-resolution mass spectrometry (DTIM-MS). Herein, we present a combined analytical and computational method for the identification of oxylipins and fatty acids. We use a reversed-phase LC/DTIM-MS workflow able to profile and quantify the oxylipin and fatty acid content of biological samples while simultaneously acquiring full scan and product ion spectra. The information regarding accurate mass, collision-cross section values in nitrogen (DTCCSN2) and retention times of the species found are compared to an internal library of lipid standards as well as the LIPID MAPS Structure Database by using specifically developed processing tools. Features detected within the DTCCSN2 and m/z ranges of the analyzed standards are flagged as oxylipin-like species, which can be further characterized using drift time alignment of product and precursor ions distinctive of DTIM-MS. This not only helps identification by reducing the number of annotations from LIPID MAPS, but also guides discovery studies of potentially novel species. Testing the methodology on Salmonella enterica serovar Typhimurium infected murine bone-marrow derived macrophages and thrombin activated human platelets yields results in agreement with literature. This workflow has also annotated features as potentially novel oxylipins, confirming its ability in providing further insights into lipid analysis of biological samples.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Publisher: American Chemical Society
ISSN: 0003-2700
Date of First Compliant Deposit: 21 May 2019
Date of Acceptance: 10 May 2019
Last Modified: 03 Dec 2024 18:15
URI: https://orca.cardiff.ac.uk/id/eprint/122730

Citation Data

Cited 35 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics