Kwok, Marwan, Oldreive, Ceri, Rawstron, Andy C., Goel, Anshita, Papatzikas, Grigorios, Jones, Rhiannon E., Drennan, Samantha, Agathanggelou, Angelo, Sharma-Oates, Archana, Evans, Paul, Smith, Edward, Dalal, Surita, Mao, Jingwen, Hollows, Robert, Gordon, Naheema, Hamada, Mayumi, Davies, Nicholas J, Parry, Helen, Beggs, Andrew D., Munir, Talha, Moreton, Paul, Paneesha, Shankara, Pratt, Guy, Taylor, A. Malcolm R., Forconi, Francesco, Baird, Duncan M. ORCID: https://orcid.org/0000-0001-8408-5467, Cazier, Jean-Baptiste, Moss, Paul, Hillmen, Peter and Stankovic, Tatjana 2020. Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL. Blood 135 (6) , pp. 411-428. 10.1182/blood.2019001262 |
Preview |
PDF
- Accepted Post-Print Version
Download (3MB) | Preview |
Abstract
Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Medicine |
Publisher: | American Society of Hematology |
ISSN: | 0006-4971 |
Date of First Compliant Deposit: | 18 December 2019 |
Date of Acceptance: | 18 November 2019 |
Last Modified: | 01 Dec 2024 07:00 |
URI: | https://orca.cardiff.ac.uk/id/eprint/127634 |
Citation Data
Cited 10 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
Edit Item |