Anyebe, Ezekiel Anyebe ![]() ![]() ![]() |
![]() |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (7MB) |
Abstract
The recent discovery of the one‐atom‐thick, two‐dimensional graphene layers with exciting properties including superb optical transparency and high mechanical robustness has stimulated extensive research interest for use as an alternative nanowires (NWs) growth platform for applications in next generation, flexible, stretchable, and printable electronic and optoelectronic devices. When combined with the exceptional capabilities of semiconductor NWs including improved light absorption, reduced optical reflectance, enhanced carrier collection, and fast response, the performance of optoelectronic devices could be significantly improved in novel high‐performance, flexible nanodevices. However, the growth of semiconductor NWs on 2D graphene layers is highly challenging owing to the absence of surface dangling bonds on graphene. Intriguingly, the last decade has witnessed a flurry of research activity on the growth of III‐V semiconductor NWs on graphene. In this review, we highlight the significant advancements that have been made in circumventing this challenge to realize the growth of III‐V semiconductor NWs on graphene. We then summarize the recent progress made in the development of graphene‐based NWs devices including photodetectors and solar cells. Finally, a brief conclusion and outlook of the way forward in the growth of semiconductor NWs on graphene is presented.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Schools > Physics and Astronomy Schools > Engineering |
Additional Information: | Attribution 4.0 International (CC BY 4.0) |
ISSN: | 2688-4011 |
Date of First Compliant Deposit: | 4 January 2021 |
Date of Acceptance: | 16 December 2020 |
Last Modified: | 04 May 2023 10:28 |
URI: | https://orca.cardiff.ac.uk/id/eprint/137215 |
Actions (repository staff only)
![]() |
Edit Item |