Bengoa-Vergniory, Nora, Faggiani, Emilie, Ramos-Gonzalez, Paula, Kirkiz, Ecem, Connor-Robson, Natalie ![]() ![]() |
![]() |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (9MB) |
Abstract
Parkinson’s disease (PD) affects millions of patients worldwide and is characterized by alpha-synuclein aggregation in dopamine neurons. Molecular tweezers have shown high potential as anti-aggregation agents targeting positively charged residues of proteins undergoing amyloidogenic processes. Here we report that the molecular tweezer CLR01 decreased aggregation and toxicity in induced pluripotent stem cell-derived dopaminergic cultures treated with PD brain protein extracts. In microfluidic devices CLR01 reduced alpha-synuclein aggregation in cell somas when axonal terminals were exposed to alpha-synuclein oligomers. We then tested CLR01 in vivo in a humanized alpha-synuclein overexpressing mouse model; mice treated at 12 months of age when motor defects are mild exhibited an improvement in motor defects and a decreased oligomeric alpha-synuclein burden. Finally, CLR01 reduced alpha-synuclein-associated pathology in mice injected with alpha-synuclein aggregates into the striatum or substantia nigra. Taken together, these results highlight CLR01 as a disease-modifying therapy for PD and support further clinical investigation.
Item Type: | Article |
---|---|
Date Type: | Publication |
Status: | Published |
Schools: | Medicine |
Additional Information: | This article is licensed under a Creative Commons Attribution 4.0 International License |
Publisher: | Nature Research |
ISSN: | 2041-1723 |
Date of First Compliant Deposit: | 28 June 2021 |
Date of Acceptance: | 27 August 2020 |
Last Modified: | 03 May 2023 23:39 |
URI: | https://orca.cardiff.ac.uk/id/eprint/142159 |
Citation Data
Cited 35 times in Scopus. View in Scopus. Powered By Scopus® Data
Actions (repository staff only)
![]() |
Edit Item |