Clement, Mathew ![]() ![]() ![]() |
Abstract
Interferon induced transmembrane protein 3 (IFITM3) is an important viral restriction factor in viral pathogenesis that also exhibits poorly understood immune regulatory functions. Here, using human and mouse models, we demonstrate that IFITM3 regulates MyD88-dependent TLR-mediated cytokine production following dendritic cell exposure to cytomegalovirus (CMV), and this process limits viral pathogenesis in vivo. IFITM3 also restricted pro-inflammatory (IL-6) cytokine production in response to influenza. IFITM3 bound to and promoted ubiquitination and proteasomal degradation of the reticulon 4 isoform Nogo-B. We reveal that Nogo-B mediates TLR-dependent pro-inflammatory cytokine production and promotes viral pathogenesis in vivo, and this process involved alteration of TLR dynamics. The anti-inflammatory function of IFITM3 was intrinsically linked to its ability to regulate Nogo-B. Thus, we uncover Nogo-B as an unappreciated driver of viral pathogenesis and highlight a novel immune regulatory pathway where IFITM3 fine-tunes TLR responsiveness of myeloid cells to viral stimulation.
Item Type: | Website Content |
---|---|
Date Type: | Published Online |
Status: | Submitted |
Schools: | Medicine |
Publisher: | bioRxiv |
Last Modified: | 27 Jul 2023 01:06 |
URI: | https://orca.cardiff.ac.uk/id/eprint/143599 |
Actions (repository staff only)
![]() |
Edit Item |